659. Chemistry of Micrococcin P. Part V.¹ The Infrared Absorption Spectra of Thiazoles.

By (MRS.) M. P. V. MIJOVIĆ and JAMES WALKER.

The infrared absorption spectra in the 2000-650 cm.⁻¹ region of 73 thiazoles of known structure and of 5 of partly known structure are discussed.

COMPARATIVELY few studies have been reported on the infrared spectra of thiazoles. Randall, Fowler, Fuson, and Dangl² examined the spectra of four thiazoles (48, 57, 75, 76 * in Table 1) in the range 3510-1100 cm.⁻¹ and observed absorption bands in the 1634-1570 cm.⁻¹ region ("thiazole I" band) and in the 1538-1493 cm.⁻¹ region ("thiazole II" band), which they regarded as being typical of the thiazole structure, although two of their compounds (48, 57) contained an amino-group, the deformation mode of which would be expected in the 1650-1590 cm.⁻¹ region. A systematic investigation of the infrared spectra of thiazole (1) and of five methyl derivatives (2-6) has been reported by Taurins, Fenyes, and Jones,³ who, for purposes of analysis, divided the spectrum into eight regions. Of these, the 1690-1480 cm.⁻¹ region was assigned to skeletal vibrations of the thiazole ring, and this region includes the "thiazole I" and "thiazole II" bands of Randall et al.² In the 1445-1375 cm.⁻¹ region they concluded that bands at 1445 and 1435 cm.⁻¹ arose only from absorption of the methyl groups and that bands in the range 1385-1375 cm.⁻¹ were given by the thiazole skeleton in addition to the methyl groups. Bands in the 1340— 1175 cm.⁻¹ region, with the exception of bands at 1192-1175 cm.⁻¹, were assigned to skeletal vibrations of the thiazole ring, as were those in the 1160-930 cm.⁻¹ region. The bands in the remaining region, namely 900-640 cm.⁻¹, were associated with out-of-plane bending vibrations of the C-H groups of the thiazole ring, but no correlation was noted between the number of bands observed and the number of hydrogen atoms attached directly to the thiazole ring.

About the same time, Sheinker, Kushkin, and Postovskii⁴ reported the infrared spectra of a number of 2-aminothiazoles and their derivatives (48-53, 56), and also discussed the

* These and similar Arabic numerals in parentheses refer to the numbers of compounds in the Tables.

 Part IV, Brookes, Clark, Majhofer, Mijović, and Walker, J., 1960, 925.
 Randall, Fowler, Fuson, and Dangl, "Infra-red Determination of Organic Structures," D. Van Nostrand Co., Inc., New York, 1949.

³ Taurins, Fenyes, and Jones, Canad. J. Chem., 1957, **35**, 423. ⁴ Sheinker, Kushkin, and Postovskii, Zhur. fiz. Khim., 1957, **31**, 214.

spectra of thiazole (1), some simple methylthiazoles (2, 3, 5, 7) and 2-bromothiazole (9). The infrared spectra of several 2-aminothiazoles ⁵ (48, 51, 56) and 2-acetamidothiazoles ⁶ (68-73) had been reported earlier; some of these spectra were measured in mineral oil only (68-73), which masked part of the "thiazole II" region of Randall et al.² The resolution,4-6 especially in the lower frequency range, was poor, and no bands below 770 cm.⁻¹ were recorded. In a study of the infrared spectra of fifteen 2-substituted thiazolines, Otting and Drawert 7 observed the spectra of 2-methyl-, 2-phenyl- (10), and 2-benzylthiazole, and noted that the intensity of the bands in the "thiazole I" region was very weak in these compounds, in contrast with the thiazolines which showed intense C=N absorption in the 1640-1550 cm.⁻¹ region. Katritzky⁸ has pointed out that heteroaromatic compounds containing five-membered rings generally show three bands in the 1600-1350 cm.⁻¹ region, near 1590, 1490, and 1400 cm.⁻¹, due to ring-stretching modes, and quoted 1610, 1500, and 1380 cm.⁻¹ as approximate frequencies for substituted thiazoles on the basis of the Canadian work.³

The thiazole nucleus contains the conjugated -C=C-N=C- system. As a result of work on aliphatic polyene azines, it has been pointed out by Blout, Fields, and Karplus⁹ that. with increasing conjugation, observed frequencies no longer correspond to the vibration of an individual bond, and, when the bonds are no longer alike, the assignment of the vibrations to the oscillation of individual structures, or even to certain combinations of such oscillations, becomes impossible. Bellamy,¹⁰ when discussing C=N stretching vibrations, emphasises that the C=N absorptions of conjugated cyclic systems cannot be considered alone, as they interact with other double bonds to a much greater extent than they do in open-chain compounds. Furthermore, the frequencies of C=C and C=N links are so close that when they are present in a ring it is doubtful whether either can be regarded as retaining its original character. In conjugated cyclic systems extensive shifts of both C=C and C=N absorptions can occur and it is better to consider the group of absorptions as a whole in relation to the particular structural unit concerned. Similar conclusions concerning the ring vibrations of pyrimidines have been drawn by Short and Thompson¹¹ and by Angyal and Werner.¹² Katritzky⁸ has classified the molecular vibrations of heteroaromatic compounds containing planar five- and six-membered rings, basing his discussion of the skeletal modes for fivemembered rings on thiophen, furan, and pyrrole; these were divided into skeletal stretching modes at ca. 1600–1250 cm.⁻¹, the ring-breathing frequency at ca. 1150–800 cm.⁻¹, inplane bending at ca. 900—600 cm.⁻¹ and out-of-plane bending at ca. 600—450 cm.⁻¹.

During work on micrococcin P, described in Part IV¹ and earlier papers ¹³ of this series, we have had occasion to observe the infrared spectra of a considerable number of monoand di-substituted thiazoles and polythiazolyls in potassium chloride discs, and sometimes additionally in chloroform, over the range 2000–650 cm.⁻¹. Altogether the infrared spectra of 53 mono- and poly-substituted thiazoles have been observed (including those of micrococcin P and of four of its derivatives whose structures are only partially known) and the results, together with data for a further 25 thiazoles abstracted from the literature are summarised in Tables 1—3. For the sake of convenience the spectrum has been divided into five sections, namely, 1800-1475, 1475-1350, 1350-1175, 1175-930, and 930-650 cm.⁻¹, and these will be discussed individually. The Tables have been still further subdivided for ease of reference.

⁵ Bogomolov, Sheinker, and Postovskii, Zhur. obshchei Khim., 1954, 24, 539.
⁶ Bogomolov, Sheinker, and Postovskii, Doklady Akad. Nauk S.S.S.R., 1953, 93, 277.

Otting and Drawert, Chem. Ber., 1955, 88, 1469.

⁸ Katritzky, Quart. Rev., 1959, 13, 353.
⁹ Blout, Fields, and Karplus, J. Amer. Chem. Soc., 1948, 70, 194.
¹⁰ Bellamy, "The Infra-red Spectra of Complex Molecules," 2nd edn., Methuen & Co., Ltd., London,

¹¹ Short and Thompson, J., 1952, 168.
¹² Angyal and Werner, J., 1952, 2911.
¹³ (a) Brookes, Fuller, and Walker, J., 1957, 689; (b) Mijović and Walker, J., 1960, 906; (c) Brookes,

	[19	61]				Ch	emist	try	of	Mi	croco	0001	in F) .	Part	V.			3383
	1535—1475 1485vs	1485s 1505vs 1605c	1520vs, 1485w 1520s, 1485w	1530s 1530s, 1480vs	1532s 1482s	14865	1482s 1515m, 1493vs 1527m, 1481vs	1501s, 1490sh	1485m	1495m	1500m, 1480m 1502s 1580 1400m	1528w, 1496m, 1482m	1510w, 1485m 1505sh	1488m	1505sh, 1490m 1525m 1530m, 1500m,	1490m	1475m 1515m	1510w	1480m 1480m 1490m 1518s 1495m 1490m 1515m 1485m 1475w
	163 <u>4</u> —1535 <i>1615</i> ш	1605w	<i>1610</i> sh	1620w	1537s	<i>1556</i> m 1543m	1600w 1600m, 1575w,	1550w 1571w	1605w 1543m	1000W 1535w 1605	1600w 1600w 16851575	1620m, 1970w	1580m, 1555w 1585m, 1555vw 1500m	1588m, 1560w,	1577m, 1560m	1605m	1605m, 1580w 1605s	1605sh, 1575s 1595m 1605-1 1500	160251, 1580vs 1615s, 1535s 1620s, 1540s 1625s, 1580s 1625s, 1580s
m1 region.	1700-1634			1690w	1675w	1640vw					1670m	16/9su	1680s 1680m 1685m	1000111 1685vs		1685s, 1665s		1685vs 1675vs 1666-	1653s 1650s 1645sh 1660s 1680vs 1675s 1675s 1675s 1670vs
<i>he</i> 1800—1475 ci	1800—1700							1715vs	1725s 1735vs	1715vs 1715vs 17965	1715vs 1715vs 1715vs	SVU271	1735s, 1718vs 1730m, 1715s 17905	1700vs		1732s	SGZ / 1		1715vs
bands in i	Phase Film	Film Film Eile	Film Film	Film Film	Film Film	Film	∽ KBr CCI	KCI KCI	KCI KCI	KCI	KCI KCI KCI	RU	KCI Nujol	KCl	KCI KCI	KCI	KCI KCI	KCI KCI	KCC KCC KCC KCC KCC KCC KCC KCC KCC KCC
sorption	Ref.	4604	# co ₹	* eo eo	4 m ·	4	41-8	13 c	13 c	13 c	13 c		13a, c	13b	1 3 c 1	13c	13 c	13 c	13a 13a 13c
TABLE 1. Ab	. Compound Thiazole	2-Methylthiazole	4-Methylthiazole	5-Methylthiazole 2,4-Dimethylthiazole	2,5-Dimethylthiazole	2,4,0-1 nmetnyttmazole 5- <u>(</u> 2-Hydroxyethyl)-4-methylthiazole	2-Bromothiazole 2-Phenylthiazole 2,5-Diphenylthiazole	Methyl thiazole-4-carboxylate	Methyl 2,4'-bithiazolyl-4-carboxylate	Methyl 2,4'.2',4''-terthiazole-4-carboxylate	Methyl 2,4''2',4'''2'',4'''-quaterthiazole-4-carboxylate Dimethyl 2,2'-methylenebisthiazole-4,4'-dicarboxylate Dimethyl 3,9'', 5-hornvlorebisthiazole 4,4'-dicarboxylate	Dumeunyi 2,2 -p-pnenyleneoistniazole-4,4 -dicarboxylate	C ₂₄ dimethyl ester	C_{a2} dicarboxylic acid corresponding with 18	C ₂₂ diol derived from C ₂₄ dimethyl ester 4-Hydroxymethyl-2,4'-bithiazolyl 4-Bromomethyl-2,4'-bithiazolyl	Methyl 2-carbamoylthiazole-4-carboxylate	Thiazole-4-carbonamide	2,4'-Bithiazolyl-4-carbonamide	2,4'-Bithiazolyl-4-carbohydrazide 2-Aminothiazole-4-carbohydrazide 2-Hydrazinothiazole-4-carbohydrazide Thiazole-2,4-dicarboxylic acid Thiazole-4-carboxylic acid 2,4'-Bithiazolyl-4-carboxylic acid 2-Phenylthiazole 4-Cyanothiazole
	No.	63	က	4.2	91	~ 00 (9 11	12	13	14	15 16	1	18	19	82 83 83 83 83 83 83 83 83 83 83 83 83 83	23	24	25	$\begin{array}{c} 26\\ 22\\ 32\\ 32\\ 33\\ 33\\ 33\\ 33\\ 32\\ 33\\ 32\\ 33\\ 32\\ 32$

	3384						Mija	ović	and	d V	Valk	er:									
	1535—1475 1530m, 1475w 1505m 1525vw	1500w, 1475m 1500w, 1480sh 1480m	1480m 1510sh, 1500s	1495m 1495m 1490s	1490s 1505vs, 1480m	1520s, 1490s	1515s 1515s, 1484s 1523s, 1486m	1523s	1516s 1529s	15395	1530sh, 1513vs 1530sh, 1510vs	1500m	1538m, 1522m 1535s 1590m	1520s, 1500s, 1490sh	1485s 1520s, 1485s	1483s 1520s. $1490m$	1520vs, 1485s 1490vs	1498s	1490s 1515s, 1490sh	1515s, 1 4 90m	
	1634—1535 1625vw 1615vs 1595s			1570m	1605m, 1580m 1595m, 1580sh	1625vs	1626s 1626s 1605m	1627s 1600sh, 1546vs	1622m 1622m 1616m	1565s 1613m	1609vs 1609vs	1592s, 1537s	1634m, 1605w 1620s 1807s	1605w, 1580m	1605s, 1585m 1600w, 1575m	1605m, 1583m 1600m, 1575m	1608m, 1585m 1575m	1605s	1634s 1630sh, 1605s	1630sh, 1605m 1557s	1550m 1542s
	1700—1634	1695s 1690s 1695s	1680vs	1685vs 1700vs 1700s	1695s 1700vs								1695s	1640s	1660s 1635s	1635s 1635s	1640vs		1675m 1655w	1668m	1682s 1685m
ued.)	18001700	1725vs 1730vs 1720vs	1720vs										171500	1708s	1720vs 1705s	1723vs					
(Contin	Phase KCI KCI KCI	KCI KCI KCI	KCI	KCI KCI	KCI	KCI	Min. oil Nujol CHCl ₃	Min. oil * Film	Film Min. oil *	Film Min. oil *	KCI KCI	Min. oil *	Nujol KCl	KCl	CHCI KCI	KCI KCI	KCI	KCI	KCI	KCI Min. oil	Min. oil Min. oil
ABLE 1.	Ref. 13c 13c 13c	13c 13a 13c	13a	13c 13a 1			12 2 S	44.	4 v) 4	' ব ' ব	י שי א	0 4 (N °	I	I		, L	'U	• •	ۍ ۴	999
T	No. Compound 34 4-Cyano-2,4'-bithiazolyl 35 Thiazole-4-carbothioamide 36 2,4'-Bithiazolyl-4-carbothioamide	 Methyl 2-acetylthiazole-4-carboxylate Methyl 2-propionylthiazole-4-carboxylate Methyl 2-bronoacetylthiazole-4-carboxylate D-prominvithiazol4-carboxylate 	 2-Isobutyrylthiazole-4-carboxylic acid Methyl 2-1'-hydroxy-n-propylthiazole-4-carboxylate 	 2-1Hydroxyethyltinazole-4-carboxylic acid 2-1Hydroxy-2-methylpropyl)thiazole-4-carboxylic acid 45 2-Aminomethylthiazole-4-carboxylic acid 	 2-1'-Aminoethylthiazole-4-carboxylic acid hydrochloride 2-(1-Amino-2-methylpropyl)thiazole-4-carboxylic acid 	hydrochloride 48 2-Aminothiazole		49 2-Methylaminothiazole	50 z-Dimentylaminotinazoie 51 2-Amino-4-methylthiazole	52 2-Dimethylamino-4-methylthiazole 53 2-Amino-4-5-dimethylthiazole	 54 2,2'-Diamino-4,4'-tetramethylenebisthiazole 55 2,2'-Diamino-4,4'-hexamethylenebisthiazole 56 A mino-4 abouthistorolo 		0.7 2-Amino-4-P-DiphenylyIthiazole 58 Ethyl 2-aminothiazole-4-carboxylate	59 Ethyl 2-benzamidomethylthiazole-4-carboxylate	60 Ethyl 2-(1-benzamido-2-methylpropyl)thiazole-4-carb-	oxylate 61 2-1'-Benzamidoethyl-4-benzylthiazole	 62 2-(1-Benzamido-2-methylprópyl)-4-phenylthiazole 63 2-1'-Aminoethyl-4-phenylthiazole hydrochloride 	64 2-(1-Amino-2-methylpropyl)-4-phenylthiazole hydro- chloride	 65 2,4-Diamino-5-phenylthiazole hydrochloride 66 2,4-Diamino-5-phenylthiazole 	67 2,4-Diamino-5-p-chlorophenylthiazole 68 2-Acetamidothiazole	69 2-Acetamido-4-methylthiazole70 2-Acetamido-4,5-dimethylthiazole

	Ľ	1961]	Chemistry	of	Micr	ococcin	Ρ.	Part V.		3385
	1535 - 1475	<i>1500</i> s 1528s, 1495m <i>14</i> 79s <i>1511</i> w, <i>1</i> 493s 1530s, 1480m 1525s	" indicates that a Steude, Annalen,	-1175	185w			180s 1205sh, 1190sh	180sh 85m 175m	190m
	1634 - 1535	1561s 1561s 1542w 1595m, 1573m 1623m, 1673m 1623m, 1605m 1580sh 1575w 1575w	ral oil; "Min. oil * ' ar, J., 1940, 1304. °	1940	1210m, 1187vs 1210m, 1187vs 1240s, 1120w, 1 1240s, 1175s	12207W, 1165VS 1210sh, 1188vs 1195s 1240m, 1195w 1195w	1250s, 1178vw 1234w, 1180w	1215s 1240s, 1215vs, 1 1245vs, 1215sh, 1245s 1246s 1958h	1245s, 1208vs, 1 1243s, 1223s, 11 1200m 1220m, 1185m 1230m, 1205s, 11 1220w	1248w, 1176m 1248w, 1230w, 1 1205s 1210s
	1700 - 1634	1648m 1658m 1648m 1648m 1655s 1665s	k; Min. oil = minel 350770 cm. ⁻¹ . 778, 1953. ⁶ Walke 4443. cm. ⁻¹ region.	-1250			0w, 1265vw 8m, 1258m	й Бw	mõ mõ	0vw, 1265m
(Continued.)	e 1800—1700	. vil . oil . oil ol ol 1735m	eak; vw = very wea al oil for the range 1. gy Commn., AECU-2 id Walker, J ., 1955, in the 1475—1175	1200	1320vs 1310s, 1285vw 1340vw, 1307vs 1305vw	13090% 1290s 1306m 1312m 1300m	1333w, 1324m, 129 1332m, 1312w, 126	$\begin{array}{c} 1325m, \ 1275s\\ 1345m, \ 1315s\\ 1330w, \ 1315s, \ 1290\\ 1330w, \ 1310m, \ 127\\ 1318s, \ 1300m\\ 1345s \ 1330m \ 1900\end{array}$	13400, 13200, 130 13300, 13200, 130 13500, 13000 13200, 13000 13250, 13000 1315s	1315m, 1285m 1305m, 1270m 1342m, 1320w, 129 1350m, 1280s 1320m, 1278s 1335m, 1278s
TABLE 1.	Ref. Phas	6 Min 6 Min 6 Min 7 Min 8 Min 13a, c KCl 13a, c KCl 13a, c KCl	 medium; w = w modium; w = w contents U.S. Atomic Energy U.S. Atomic Energy paper. Chase an Absorption bands 	350		, 1 3 80m		1395s	1 1375vw, 1355w 1	e .
	nnd	ole thylthiazole ylthiazole ulphathiazole) 1	aned from the interature ong; sh = shoulder; m d for the range 2000-13 (c, and Walker, following (c, and Walker, following	1225.00	1445vs, 1413s, 1376s 1445vs, 1414vs, 1375s 1445m, 1405s	144505, 130005 144505, 140200, 13765 14435, 1374m 14105h, 14455h, 14155 139005	1454m, 1418m 1451s, 1425m	1430m, 1410m 1468s, 1430m, 1408m 1470s, 1438m, 1422w, 1470s, 1435m, 1422m 14620s, 1435m, 1420m 1462vs, 1430m, 1420m	14455, 1410w, 1375m 1455m, 1408m, 1375n 1463w, 14385, 14155, 1448w, 14005, 1368m 1415w, 1395m 1475m, 1433m, 1385n 1450w, 1430s, 1363s	1460m, 1396m, 1363 1465sh, 1410m 1413m, 1355m 1460w, 1440m, 1380w 1440m, 1390w
	Compo	0-4-phenylthiazo 0-5-bromo-4-meth ylamido4-meth midothiazole (5 ylthiazole-2-thiol azole-2-thiol P Inicrococcin P	a data were obta trong; s = stro carbon was use « Koenig, Hay d Dean, Mijovi	Phase Film	Film Film Film Film Film Film Film Film	Film Film Film	KBr CCL			N K K K K K K K K K K K K K K K K K K K
		2-Acetamide 2-Acetamide 2-Acetamide 2-Sulphanike 4,5-Dimethy 4,5-Dimethy 4-Phenylthi Mitrococcin Mitrococcin	All transferences $y_{\rm vs} = very$ s $f_{\rm fluorohydro}$ References: 1, 261 , 26.	Ref.		ი ლ 4,	r- 8	13c 13c 13c 13c	13a, c 13b 13c 13c 13c 13c 13c	13c 13a 13a
	No.	1228425258	poly 189	No.	- c1 c3 4 M	9 O L O O	10	115 115 116 116 116	55322200 55355 5555 5555 5555 5555 5555	3 6 8 7 8 9 8 8 6 8 7 8 8 8

	1250	1215s, 1178m 1218s	1210m	1240m, 1180m 1945m 1190m	1240vw, 1175m	1225vs, 1180m	1220vs	1230VS, 1180S 1950e 1995e	1245s, 1220s	1235vs, 1175s	1243s	1215s	1918.25	1210VS 1990vs 1195sh	1200s 1100sl	1235m, 1189m			1234m	2001	1900m	1200W	1202w	1248s	1240s, 1185w, 1175w	1242s, 1185m	1940 1180	1240W, 1180III	1232m, 1205w	1220w, 1178m	1223m, 1188w	1215w, 1185w	1215w, 1163m	1250m, 1218w	1218w				1206w 1185m	w 1203w, 1186m	1230m, 1185w	12255	
(Continued.)	1350—1250	1314w 1335m, 1310sh, 1252m	1298s	1317S, 1260VW 1340m 1975m	1310m	1333s, 1295m, 1275s	1336s, 1280w	13155, 1295m, 1270m 1326m 1980m	1335s. 1280m	1330s, 1300m, 1285vs	1340w, 1320w, 1275m	1325w, 1280w	1305m 1205m	1200m 1973m	1320m, 1275m	1327m	1345m, 1252m	1317m	1342s, 1288m	1316m	1310Sn, 1300S, 1270m 1990m 1900s 1980m	1335m 1983m	1333m 1309w 1292vw	1336s	1345m, 1315s, 1272m	1327m, 1315m, 1285m	1337m, 1310m, 1300s, 1272m 1990m 1910m 1985	1320m 1290vw 1273w	1345m, 1293w, 1275m	1340m	1325m, 1275w	1330m, 1300w, 1260w	1290m	1290m	1265m 1900-	12905	1334m, 1282m 1215	1919111, 1200 W 1318m 1280s, 1265s	1321m, 1263m	1342m, 1316w, 1305vw, 1282m, 1253	1310vw, 1275vw	1310vw	e Table 1.
TABLE 2.						32m	30w, 1360m	(g	10w													0111			3 m, 1366m																c I	70m	, Se
	14751350)5m 40m, 1405m	1	UDS 16 1415c	0s	30m, 1410m, 136	33m, 1410m, 138	0m, 1392m Dem 1925m 192	00m 1390m 135	40m, 1375w	38m	90m, 1370sh	95m 25m 1955m	20111, 1000111	ßm			80m	79w		25m, 1376m 19 1498m 196	tzw, 14zom, 190	5.5m	t2m. 1370s	50m, 1438m, 139	92m, 1366m	30m, 1385w	±011, 1550m 20m 1360m	45m. 1395m	8m, 1365w	ł5m, 1375s	38s									20sh, 1380w	45sh, 1420sh, 13	
		1460m, 140 1465m, 144	1420s	1460sh, 140 1455 143	1460w, 139	1458m, 143	1458m, 145	1458s, 143(1462m 140	1460m, 144	1414m, 136	1475sh, 139	1440m, 135	1965m	1400w 135	1400s	1425m	1440w, 138	1427m, 137	1390m	1455m, 142	1400m, 144	1404m 13/	1470m. 144	1468m, 145	1442m, 139	1456m, 148	14/UM, 149	1460m. 144	1450w, 141	1455w, 144	1405m, 13(1495s	14450	1445s	1445sh, 14	1468m, 14	
	Phase	KCI	KCI	NC NC	KCI	KCI	KCI	KCI	NCI KCI	KCI	KCI	KCI	KCI		KCI KCI	Film	Film	Film	Film	Min. oil *	RCI 72	Min oil	Nuiol	KCI	KCI	KCI	KCI	RCI RCI	KCI	KCI	KCI	KCI	Min. oil	Min. oil	Min. oil	Min. oil	Min. oil	MIII. OII KCI	Nuiol	Nujol	KCI	KCI	
	Ref.	П	13c	13c	13c	13 c	l3a	13c	132	304	13 °	13 ª			-	4	4	Ð	4	4.	• •	ь и	.	٦.,	I	I	'n	• -	4 1 8	•	e	•	9	9	9	9	9	0	Ğ	1 01	13a, c	13 b	
	No.	31	33	34 24	36	37	38	39	4 F	42	43	44	45	0 1 1	4 4 8	49	20	51	52	53	54	50 20	22	200	59	60	61	29 83	32	65	66	67	68	69	21	23		13	75	26	77	78	

[]	19	61]						С	her	nisi	try	of	M_{2}	icra	000	ccin	ı I	2.	-	Pa	rt	V.							33	87
	700 - 650		670m	665s	673vw, 652s			689vs	684s						690vw, 670w				660m	700m	685m	680m	m00/			080111		S007		
	800 700	800vs, 720vs 763e 717ve	727s 727s	720vs	757s		10001	757vs, 719m	757vs	775m, 765s 785m 765m 735s	790w, 765s, 745w	765s 783e 765vs	764s	800m, 795sh, 775sh, 760s,	790m, 770w, 750m, 730s, 730s	720sn 800w, 760s, 735m	785m. 750m	742m, 720m	785s, 765s, 725w, 705s	780m, 750w	780s, 720m	800m	790w 765m 735m	775m, 735m	765w, 725m	775m, 70.m, 14.0m	784m, 765sh, 755w, 705w	775s	780s, 770s	773s, 735w 773s
175—650 cm. ⁻¹ region.	930800	880vs, 860vs 874e 830m 810m	875vs, 830vs, 807vs	010V5, 041511 853VS	840vs	875m 000	920m, 597m 870m	917w, 877m, 836vw	914m, 903w, 854s	910s, 880s, 860s, 830s 920w 875s 855s	925m, 890m, 880w, 870s, 850m, 890m, 810w,	905m, 880s, 865sh, 830m 915m 898m 865s 830s	905s, 875w, 860w, 850s, 840m	915w, 890m, 852m, 844sh	890m, 855m, 845m	880vw, 865w, 850m	880vs. 820vs	885m, 870s, 845s, 800m	915w, 870w, 815w	0005, 0405, 0205 8755, 843m	895w, 875vs, 850sh, 835s, 810m	856w	860w, 810m 885w 875w 860w 825w	880m, 855m, 820m	880m, 860vw, 825m 018 270 205	912W, 810W, 800W 885s, 835s	886s, 878s, 840s, 805w	8755, 8055, 8355, 8105 8755, 8255	915m, 870vw, 855w, 825m	915m, 875w, 835w
3. Absorption bands in the 1	1050 - 930	1040vs 966m - 030s	1037m, 995s, 930vs	10158, 940vs	990m, 960s	1020m, 965m 015	940W 1047m. 1006vs	1020w, 1000m, 970vs	1033m, 1005m, 980s, 962m	980s 983s	1015m, 985m	1035vw, 1015w, 995m, 930m 988s 938s	1020m, 1000s, 970s	1040vw, 1025w, 1015m, 1000w,	9.000, 94.000 1040vw, 1020w, 995w, 980m, 05000, 02000	900m, 930m 1050s, 1038s, 1020s, 990s,	960m, 930w 1050s. 1025vs. 955s	1025m, 963m	982m	930S 1020w, 940m	10 3 5w, 995m, 940s	995w, 945m	1030m, 990s, 940m 940m	940s	1030vw, 940m	10250W, 930III 935s	1025vw, 950s	900VS 1025m. 960s	1015m, 980m, 935m	1010w, 995s, 930m 990m, 950m
TABLE 3	1175	1120vs 1160vs 1055m	1135m 1135m	1140vs	1160vs	1066m 1155 1055.	1120W, 1000S	1142s, 1092w, 1070m, 1053s	1152s, 1100w, 1075m	1090s 1092s	1090m	1095m 1158vs: 1080m, 1055m	1118w, 1103vs	1110m, 1095s, 1075w	1110m, 1085w, 1060vw	1135w, 1112m, 1090w, 1065m	1150s	1153s, 1100w	1123m, 1095m, 1080m	1110111, 1069111 1085w	1100m	1077m	1135w, 1110s	1110m	1110sh 1005m	1128m	1150m	1110m 1075m	1115w, 1098m, 1060m	1100m, 1055w
	f. Phase	Film	Film	Film	Film	Film	Film	KBr	- Too So	د KCI	c KCl	c KCl KCl	KCI	a, c KCl	b KCl	c KCl	KCI	KCI	c KCl	s KCI	KCI	KCI	a KCI	a KCl	KCI	c KCI	c KCl	, KCI	c KCl	
	Vo. Re	7 7 7 7 7 7 7		າ ຕ * ມາ	9 I	a 4	9 4	10 7	• TT	12 13 13 13	14 13	15 13 16	17	18 13	19 13	20 13	21 I	22	23 13	25 13 25 13	26	27	29 13	30 13	31 39	33 13	34 13 95 19	36 13	37 13	39 13

The 1800-1475 cm.⁻¹ Region (Table 1).-(a) 1800-1700 cm.⁻¹ region. The only bands observed in this region are due to ester C=O stretching vibrations, or, in two cases (19, 29), to carboxyl-carbonyl stretching modes. All the esters examined are either ethyl or methyl esters, and all contain the ester group as a substituent in the 4-position of the thiazole nucleus (12-17, 23, 37-39, 42, 58-60). In the solid state the majority absorb between 1735 and 1715 cm.⁻¹: Bellamy ¹⁴ cites 1730—1717 cm.⁻¹ as the usual range for aryl esters. The four compounds (15, 58-60) exhibit unusually low ester-carbonyl frequencies, absorbing in the region 1708-1695 cm.⁻¹. Three of these (58-60) were investigated in chloroform solution (0.25-0.7%) and the ester-carbonyl absorption then shifted to the range 1723—1715 cm.⁻¹, suggesting that some intermolecular bonding may be occurring in the solid state. Similarly, compounds (12-14) showed a fairly wide variation in estercarbonyl absorption in the solid state for a series of such closely related compounds, but investigation of the spectra in chloroform solution (0.5%) showed a constant ester-carbonyl frequency of 1725 cm.⁻¹ for all these compounds. Eisner and Erskine ¹⁵ in their work on the infrared spectra of pyrrolecarboxylic esters also noted that solid-state spectra do not show uniform frequencies even among similar compounds, since the carbonyl stretching frequency depends upon the packing and hydrogen bonding of the molecules within the crystals.

(b) 1700-1535 cm.⁻¹ region. This region includes the "thiazole I" region (1634-1570 cm.⁻¹) originally postulated by Randall et al.². Thiazole (1) itself shows a band of medium intensity at 1615 cm.⁻¹, but inspection of Table 1 reveals that bands in this region are shown only by certain types of thiazoles, although they may well be masked in certain other thiazole derivatives. For those compounds (1-3, 5-8, 12-16, 23-25, 33, 34, 49, 50, 52, 75) where the "thiazole I" band does appear, it is usually weak, and rarely of medium or strong intensity, and the lower end of the range appears to be around 1535 cm.⁻¹. For the nitriles (33, 34), amides (23-25) in chloroform, esters (12-14) in chloroform, thiazole (1) itself, simple methylthiazoles (2, 3, 5), and 4,5-dimethylthiazole-2-thiol (75), it is usually a weak band occurring between 1625 and 1605 cm.⁻¹, while for esters (12-16) in the solid state it is a band of weak or medium intensity between 1600 and 1535 cm.⁻¹. For a limited number of alkylthiazoles (6-8) and alkylaminothiazoles (49, 50, 52) the "thiazole I" band apparently appears as a medium or strong band in the region of 1565-1537 cm.⁻¹. This is in agreement with the observation by Otting and Drawert⁷ that the intensity of the "thiazole I" bands in the three compounds which they investigated was very weak.

In all the other thiazole derivatives investigated, where bands are observed in this region, it is found that these are caused by the absorption of one or more of the substituent groups. In certain aryl derivatives (10, 11, 17, 76) absorption in the region of 1600-1575 cm.⁻¹ is probably due to the C=C stretching vibrations of the benzene rings.16

In the amide derivatives (23-25) the strong bands in the region 1685-1640 cm.⁻¹ are assigned as primary amide I bands. This is substantiated by a shift to a higher frequency in chloroform solution (0.3%).¹⁷ In methyl 2-carbamoylthiazole-4-carboxylate (23) the nature of the strong band appearing at 1665 cm.⁻¹ in the solid state is not clear—this band disappears in chloroform solution and is sometimes absent from spectra taken from potassium chloride discs. In chloroform solution the bands at 1605, 1605, and 1595 cm. $^{-1}$ of compounds (23), (24), and (25), respectively, resolve into two, the lower-frequency band (1580—1575 cm.⁻¹) being assigned to primary amide II absorption, and that at 1605 cm.⁻¹ to skeletal "thiazole I" absorption. In the hydrazides (26-28) the strong bands between 1660 and 1645 cm.⁻¹ are assigned to amide I vibrations, those at 1535, 1540, and 1580 cm.⁻¹

¹⁴ Bellamy, ref. 10, p. 179.

¹⁵ Eisner and Erskine, J., 1958, 971.
¹⁶ Bellamy, ref. 10, pp. 71-72.

¹⁷ Bellamy, ref. 10, p. 210.

to secondary amide II vibrations, and the remaining bands at 1615, 1620, and 1625 cm.⁻¹ to the NH deformation mode of the $\rm NH_2$ group. In the thioamides (35, 36) the strong bands at 1615 and 1595 cm.⁻¹ respectively are likewise assigned to NH deformation vibrations.¹⁸

None of the simpler thiazole carboxylic acids (29-32) shows any bands in the "thiazole I " region; the carbonyl absorption occurs in the range 1695—1670 cm.⁻¹ with an additional strong band at 1715 cm.⁻¹ for thiazole-2,4-dicarboxylic acid (29). The keto-esters (37-39) similarly show no "thiazole I" bands, and the ketonic-carbonyl frequencies lie between 1695 and 1690 cm.⁻¹. In spectra of the keto-acids (40, 41) the acid- and ketonic-carbonyl frequencies are not resolved in the solid state, but give a single strong band at 1680 cm.⁻¹. The hydroxy-acids (43, 44) show acid-carbonyl absorption at 1685 and 1700 cm.⁻¹, respectively, but no absorption in the "thiazole I" region. In the amino-acid hydrochlorides (45-47) the acid-carbonyl frequency is at or near to 1700 cm.⁻¹, and the bands between 1605 and 1570 cm.⁻¹ are probably associated with NH₃⁺ deformation frequencies, although exact assignment is difficult.

The band at 1626 cm.⁻¹ in Nujol falling to 1605 cm.⁻¹ in chloroform shown by 2-aminothiazole (48) is due to NH deformation vibrations of the amino-group. Similar bands in the range 1622—1598 cm.⁻¹ are observed in spectra of other 2-aminothiazoles (51, 53—56, 58). For the benzamido-derivatives (59—62) the amide I band in the solid state occurs in the region 1640—1635 cm.⁻¹ shifting to close to 1660 cm.⁻¹ in chloroform (59, 60). The two characteristic benzoyl bands near 1600 and 1580 cm.⁻¹ are also observed. In the solid state the secondary amide II band appears between 1520 and 1530 cm.⁻¹. The bands at 1595 and 1573 cm.⁻¹ in the sulphanilamide (74) are very probably due to a combination of NH deformation vibrations and the vibrations of the benzene ring. The exact assignment of the bands in the more complex molecules (57, 63—67) in this region has not been attempted but the bands are certainly due to NH deformation modes and vibrations of the benzene rings.

The acetamidothiazoles (68—72) in mineral oil mulls show the secondary amide I band in the range 1685—1648 cm.⁻¹ and the secondary amide II band between 1561 and 1542 cm⁻¹. In the tertiary amide (73) the amide I band occurs at 1648 cm.⁻¹; in this compound there is a weak band at 1542 cm.⁻¹, which could be due to a thiazole skeletal vibration.

(c) 1535-1475 cm⁻¹ region. This includes the "thiazole II " region (1538-1493 cm⁻¹) of Randall *et al.*² which we should certainly extend as far as 1475 cm⁻¹ and possibly to 1470 cm⁻¹. Thiazole (1) itself shows a very strong band at 1485 cm⁻¹, and all the compounds examined possess one or two bands in this region except a small number (8, 49, 50, 52, 68-72); some of these compounds (68-72) were investigated in mineral oil mulls on an instrument of apparently low sensitivity, where bands in part of the "thiazole II" region would be masked by the absorption of the mineral oil itself. For the majority of the compounds examined one or both of the bands in this region are of medium or strong intensity, exceptions being 4-cyanothiazole (33), 2,4'-bithiazolyl-4-carbonamide (25) in the crystalline state, and 2,4'-bithiazolyl-4-carbothioamide (36).

The 1475—1350 cm.⁻¹ Region (Table 2).—This region of the spectrum includes both the CH_3 and CH_2 deformation vibrations, giving rise to absorptions near 1460 (asymmetrical mode) and 1375 cm.⁻¹ (symmetrical mode). Taurins, Fenyes, and Jones ³ concluded that, since thiazole (1) showed a strong band at 1385 cm.⁻¹, the bands at 1445 and 1435 cm.⁻¹ in the methylthiazoles (2—6) arose by absorption of the methyl groups, and that bands at 1385—1375 cm.⁻¹ are given by the thiazole skeleton as well as by the methyl groups. Most of the thiazoles examined had several bands in the 1475—1350 cm.⁻¹ region, and the majority possessed at least one band in the range 1445—1385 cm.⁻¹, usually of medium or strong intensity (exceptions being 27, 56, 68—73 where no absorption at all could be observed in the region under discussion).

¹⁸ Bellamy, ref. 10, p. 256.

The 1350—1175 cm.⁻¹ Region (Table 2).—This is a complex region with many bands due to substituent groups, in addition to the skeletal thiazole vibrations. Thiazole (1) shows two very strong bands in this region, at 1320 and 1240 cm.⁻¹. All the compounds investigated, with only two exceptions (28, 70) have at least one band of usually medium to strong intensity within the range 1345—1290 cm.⁻¹, which includes the range 1315—1300 cm.⁻¹ regarded by Sheinker *et al.*⁴ on the basis of their smaller selection of data as being linked with oscillations of the thiazole ring, and the majority possess a medium to strong band in the range 1250—1195 cm.⁻¹. Taurins *et al.*³ assigned the bands at 1192—1175 cm.⁻¹ to skeletal C-CH₃ vibrations. Bands in this region occur in several compounds other than methyl derivatives, but it is of interest that a strong or medium band within the range 1190—1175 cm.⁻¹ is a constant feature of the 4-substituted bithiazolyls (13, 21, 22, 25, 26, 31, 34, 36) regardless of the nature of the substituent.

The 1175—930 cm.⁻¹ Region (Table 3).—(a) 1175—1050 cm.⁻¹ region. Thiazole (1) itself shows a very strong band at 1120 cm.⁻¹. Most of the 2-monosubstituted thiazoles examined (2, 9, 10, 48-50, 68, 74) have one main band in the range 1160-1130 cm.⁻¹ accompanied by a less intense band of lower frequency, at 1088-1055 cm.⁻¹. 2-Phenylthiazole (10) has in addition two more bands (1092w and 1053s); in 2-bromothiazole (9) the lower-frequency band is at 1047 cm.⁻¹, and 2-dimethylaminothiazole (50) has four bands in this region. In contrast, the 4- and 5-monosubstituted thiazoles (3, 4, 12, 24, 30, 33, 35) all have a single band between 1135 and 1090 cm.⁻¹, and in only one (24) is it accompanied by a lowerfrequency band (at 1085 cm.⁻¹). Amongst the thirty-two 2,4-disubstituted thiazoles (5, 16, 17, 23, 27–29, 32, 37–47, 51, 52, 54–64, 69, 71, 73, 76) investigated, all except five have at least one band within the range 1140—1077 cm.⁻¹, usually of medium or strong intensity. The five exceptions (56, 69, 71, 73, 76) are all compounds whose spectra were taken from the literature, and accurate detailed values are not available. The two 2,5-disubstituted thiazoles (6, 11) had strong bands at 1160 and 1152 cm.⁻¹, respectively. The 2,4,5-trisubstituted thiazoles (7, 53, 65-67, 70, 72, 75) have no strong bands in this region, but since three (65-67) contain phenyl groups which show absorption in this region, and five (7, 53, 70, 72, 75) have been abstracted from the literature and are therefore of uncertain accuracy, caution must be exercised in interpreting these results. The absence of strong bands in the trisubstituted thiazoles does suggest, however, that this is the region of C-H in-plane deformation vibrations.

The ten polythiazolyls examined (13—15, 21, 22, 25, 26, 31, 34, 36) all possessed a single band, usually of medium intensity, within the range 1153—1075 cm.⁻¹, except (22), which showed an additional weak band at 1100 cm.⁻¹.

(b) 1050—930 cm.⁻¹ region. The 4-monosubstituted thiazoles (3, 12, 24, 30, 33, 35) show the most characteristic behaviour in this region, all showing a strong band in the 980—930 cm.⁻¹ region. The 2-monosubstituted thiazoles (2, 9, 10, 48-50, 68, 74) and the 5-monosubstituted compound (4) all show bands of widely varying frequency and intensity, while thiazole (1) itself has a single very strong band at 1040 cm.⁻¹. The rest of the compounds generally show one or more medium or strong bands whose frequencies do not bear any obvious relation to the pattern of substitution or nature of the substituent.

The 930—650 cm.⁻¹ Region (Table 3).—The bands in this region are usually associated with ring vibrations and C-H out-of-plane deformations. The data for certain compounds (7, 9, 49-53, 56, 57, 68-73, 75, 76), which were abstracted from the literature, are probably not complete.

(a) 930-800 cm.⁻¹ region. All the 2- and 4-monosubstituted thiazoles (2, 3, 9, 10, 12, 24, 30, 33, 35, 48-50, 68, 74) possess strong or medium bands within the range 890-850 cm.⁻¹. Thiazole (1) itself shows two strong bands at 880 and 860 cm.⁻¹, and Sheinker et al.⁴ regard a band in the 880-860 cm.⁻¹ region as being perhaps characteristic of the thiazole ring. The 2,4- and 2,5-disubstituted thiazoles and the 2,4,5-trisubstituted compounds seldom exhibit bands in this range. When the substituents are thiazole rings (13-15, 21, 22, 25, 26, 31, 34, 36), however, or when there are two thiazole nuclei in close

proximity in the molecule (16, 17) a strong band in the 890—860 cm.⁻¹ region again appears. Of all the compounds examined, the 4-monosubstituted thiazoles (3, 12, 24, 30, 33, 35) show the greatest complexity in the 930—800 cm.⁻¹ region, possessing from two to four strong bands. A similar complexity is found in the polythiazolyls or in compounds where there are two thiazole nuclei close to each other in the molecule (13—17, 21, 22, 25, 26, 31, 34, 36).

(b) 800—700 cm.⁻¹ region. Thiazole (1) has two strong bands at 800 and 720 cm.⁻¹, and nearly all the compounds investigated possessed at least one strong or medium band in this region. The absorption pattern here appears to depend more on the nature of the substituent than on the type of substitution; for example, the simple alkyl and phenyl derivatives (2—6, 8, 10, 11) have usually a single strong band, while the simple carboxylic acids (29—32) appear to have two medium intensity bands. Similarly, closely related compounds have very similar absorption patterns (24—26, 37—39, 45—47). The absence of bands in the trisubstituted compounds (7, 53, 65—67, 70, 72), except for the absorption of the monosubstituted benzene ring, appears to suggest that absorptions in this region are attributable to C-H out-of-plane deformation modes, but this conclusion should be regarded with caution, since it is based on observations on a very limited number of compounds.

(c) 700—650 cm.⁻¹ region. As expected, all compounds containing monosubstituted benzene rings for which accurate measurements are available, show a strong (10, 11, 59—66), or medium (32), band in this region, due to the C-H out-of-plane deformation mode. In addition, three methyl derivatives (3, 5, 6) show strong to medium bands in the 670—652 cm.⁻¹ range. The only other compounds to show absorption in this region were all those compounds containing an NH₂ group, in the form of a primary amine, amide, thio-amide (except 36), or hydrazide (23—28, 35, 45—48, 54, 55, 58, 63, 64, 74); other exceptions were compounds (65) and (66) where the band might be masked by the monosubstituted aromatic absorption, and compound (67).

These observations may be summarised as follows. The "thiazole I" band ² in the 1625—1535 cm.⁻¹ region is only observed in certain thiazole derivatives, and is usually weak. This is in marked contrast to the thiazolines ⁷ which show intense C=N absorption in the range 1640—1550 cm.⁻¹. Nearly all the thiazoles investigated showed one or two medium to strong bands in the "thiazole II" region ² (1535—1475 cm.⁻¹). Similarly, most of them have at least one medium to strong band in the range 1445—1385 cm.⁻¹. These three regions correspond to the three approximate skeletal frequencies quoted for substituted thiazoles by Katritzky ⁸ (1610, 1500, and 1380 cm.⁻¹).

Most of the thiazoles have bands in the 1345-1290 cm.⁻¹ and 1250-1195 cm.⁻¹ regions, usually strong to medium, and all the 4-substituted bithiazolyls have a medium to strong band in the 1190-1175 cm.⁻¹ region. Most of the 2-monosubstituted thiazoles examined had one main band in the range 1160-1130 cm.⁻¹, accompanied by a less intense band in the range 1088–1055 cm.⁻¹. In contrast, the 4- and 5-monosubstituted thiazoles had a single band in the 1135—1090 cm.⁻¹ region. In addition, the 4-monosubstituted compounds all had a strong band in the 980-930 cm.⁻¹ region, and showed a complex pattern (two to four strong bands) in the 930-800 cm.⁻¹ region. All the 2- and 4-monosubstituted thiazoles had strong bands in the 890-850 cm.⁻¹ range. The majority of the 2,4-disubstituted derivatives possessed at least one band within the range 1140-1077 cm.⁻¹, but seldom exhibited bands in the 890-850 cm.⁻¹ region; the polythiazolyls, however, all showed a strong band in this range. The trisubstituted thiazoles showed no strong bands in either the 1160-1050 cm⁻¹ or the 930-800 cm⁻¹ region. The only compounds to show bands between 700 and 650 cm.⁻¹ were those containing a monosubstituted benzene ring, some methyl derivatives, and those compounds containing an NH₂ group in the form of primary amine, amide, thioamide, or hydrazide. There appears to be no correlation between the number and position of the bands in the 930-650 cm.⁻¹ region and the pattern of substitution, as there is in the benzene and pyridine series.

EXPERIMENTAL

All the infrared spectra were measured with a Perkin–Elmer double-beam recording spectrophotometer (model 21) incorporating a sodium chloride prism.

Dimethyl 2,2'-Methylenebisthiazole-4,4'-dicarboxylate (16).--(i) A mixture of malononitrile (3.3 g.), liquid hydrogen sulphide (ca. 3 c.c.), and triethanolamine (3 drops) in ethanol (20 c.c.) was heated at 50° in a sealed tube for 6 hr. The crystalline product (6.35 g., 95%) was collected, washed with ethanol, and dried at 100°. Recrystallisation from dimethylformamide-ethanol gave dithiomalonamide as yellow needles, m. p. 214–215° (decomp.). Lehr, Guex, and Erlenmeyer ¹⁹ report m. p. 212° (decomp.).

(ii) The preceding product (1.34 g.) was heated on a water-bath with methyl bromopyruvate (3.62 g.) and dimethylformamide (5 c.c.) for 2 hr. The brown crystals which separated on cooling were collected, washed with ethanol, and dried at 100°. Recrystallisation from dimethylformamide-ethanol gave dimethyl 2,2'-methylenebisthiazole-4,4'-dicarboxylate (850 mg., 30%) as pale yellow plates, m. p. 177-179° (Found: C, 44.6; H, 3.5; N, 9.3. C₁₁H₁₀N₂O₄S₂ requires C, 44·3; H, 3·4; N, 9·4%).

Dimethyl 2,2'-p-Phenylenebisthiazole-4,4'-dicarboxylate (17).--(i) A mixture of terephthalonitrile 20 (750 mg.), liquid hydrogen sulphide (ca. 2 c.c.), triethanolamine (2 drops), and ethanol (20 c.c.) was heated at 50° in a sealed tube for 6 hr. The crystalline product was collected and washed with a little ethanol. Recrystallisation from dimethylformamide-ether gave dithioterephthalamide as yellow plates (870 mg., 76%), m. p. 271-273°. Luckenbach²¹ reports m. p. 263° (decomp.).

(ii) A mixture of the preceding compound (392 mg.) and methyl bromopyruvate (724 mg.) in dimethylformamide (5 c.c.) was heated at 100° for 2 hr. After cooling, the product was collected and recrystallised from dimethylformamide, giving dimethyl 2,2'-p-phenylenebisthiazole-4,4'-dicarboxylate (440 mg., 61%) as off-white crystals, m. p. 253-256° (Found: C, 53.5; H, 3.3; C₁₆H₁₂N₂O₄S₂ requires C, 53·3; H, 3·3; N, 7·8%). N, 7.8.

2,4'-Bithiazolyl-4-carbohydrazide (26).-A mixture of ethyl 2,4'-bithiazolyl-4-carboxylate (544 mg.) and hydrazine hydrate (110 mg.) in ethanol (7 c.c.) was heated under reflux for 2 hr. After cooling, the crystalline product was collected and recrystallised from dimethylformamideethanol, giving the hydrazide (450 mg., 88%) as colourless needles, m. p. 264-266° (Found: C, 37.6; H, 2.9; N, 24.4. $C_7H_6N_4OS_2$ requires C, 37.1; H, 2.7; N, 24.7%).

2-Aminothiazole-4-carbohydrazide (27).—A mixture of ethyl 2-aminothiazole-4-carboxylate 22 (1.72 g.) and hydrazine hydrate (1.0 g.) in ethanol (10 c.c.) was heated under reflux for 1 hr. The solution was filtered, and the crystals which separated on cooling were collected. Recrystallisation from ethanol gave 2-aminothiazole-4-carbohydrazide (1.5 g., 95%) as colourless needles, m. p. 192-195° (Found: C, 30.6; H, 3.7; S, 20.1. C₄H₆N₄OS requires C, 30.4; H, 3.8; S, 20.3%).

2-Hydrazinothiazole-4-carbohydrazide (28).-Ethyl 2-bromothiazole-4-carboxylate (600 mg.) was heated under reflux with hydrazine hydrate (590 mg.) in ethanol (10 c.c.) for 1 hr. The crystalline product, which separated on cooling, was collected, and crystallised from dimethylformamide-ethanol as fawn needles (170 mg., 39%), m. p. 235-236° (decomp.) (Found: C, 28.0; H, 4.4; S, 18.2. C₄H₇N₅OS requires C, 27.7; H, 4.1; S, 18.5%).

2,4'-Bithiazolyl-4-carboxylic Acid (31).—Ethanolic 10% potassium hydroxide (20 c.c.) was added to a suspension of methyl 2,4'-bithiazolyl-4-carboxylate (2.26 g.) in ethanol (50 c.c.), and the mixture warmed on a water-bath for 10 min. The ester dissolved and the potassium salt of the acid was precipitated. The salt was dissolved in water (35 c.c.), and the solution acidified to Congo Red with concentrated hydrochloric acid. Evaporation to dryness and recrystallisation of the residue from 20% aqueous acetic acid gave 2,4'-bithiazolyl-4-carboxylic acid (1.94 g., 91%) as colourless needles, m. p. 231-232° (Found: C, 39.6; H, 1.9; N, 12.9. C₇H₄N₂O₂S₂ requires C, 39.6; H, 1.9; N, 13.2%).

2-1'-Benzamidoethyl-4-benzylthiazole (61).—A mixture of α -benzamidopropionothioamide²³ (1.04 g.) and benzyl chloromethyl ketone (842 mg.) in methanol (10 c.c.) was heated under

²³ Goldberg and Kelly, J., 1947, 1372.

¹⁹ Lehr, Guex, and Erlenmeyer, Helv. Chim. Acta ,1944, 27, 971.

Rouiller, Amer. Chem. J., 1912, 47, 475.
 Luckenbach, Ber., 1884, 17, 1430.
 Steude, Annalen, 1891, 261, 26.

reflux for 4 hr. The methanol was removed by distillation, and the residual oil taken up in benzene and washed with aqueous sodium carbonate and water. Removal of the benzene left an oil (1.5 g., 93%) which slowly crystallised. Recrystallisation from aqueous ethanol (charcoal) gave 2-1'-benzamidoethyl-4-benzylthiazole as colourless needles, m. p. 127—129° (Found: C, 70.2: H, 5.8; N, 8.6. $C_{19}H_{18}N_2OS$ requires C, 70.8; H, 5.6; N, 8.7%).

The authors are indebted to Mr. R. J. Clark for preparative assistance.

NATIONAL INSTITUTE FOR MEDICAL RESEARCH, THE RIDGEWAY, MILL HILL, LONDON, N.W.7. [Received, February 9th, 1961.]

.