659. Chemistry of Micrococcin P. Part V. ${ }^{1}$ The Infrared Absorption Spectra of Thiazoles.

By (Mrs.) M. P. V. Mijović and James Walker.
The infrared absorption spectra in the $2000-650 \mathrm{~cm} .^{-1}$ region of 73 thiazoles of known structure and of 5 of partly known structure are discussed.

Comparatively few studies have been reported on the infrared spectra of thiazoles. Randall, Fowler, Fuson, and Dangl ${ }^{2}$ examined the spectra of four thiazoles (48, 57, 75, 76 * in Table 1) in the range $3510-1100 \mathrm{~cm} .^{-1}$ and observed absorption bands in the 1634 $1570 \mathrm{~cm} .^{-1}$ region (" thiazole I" band) and in the $1538-1493 \mathrm{~cm} .^{-1}$ region ("thiazole II " band), which they regarded as being typical of the thiazole structure, although two of their compounds $(48,57)$ contained an amino-group, the deformation mode of which would be expected in the $1650-1590 \mathrm{~cm} .^{-1}$ region. A systematic investigation of the infrared spectra of thiazole (1) and of five methyl derivatives ($2-6$) has been reported by Taurins, Fenyes, and Jones, ${ }^{3}$ who, for purposes of analysis, divided the spectrum into eight regions. Of these, the $1690-1480 \mathrm{~cm} .^{-1}$ region was assigned to skeletal vibrations of the thiazole ring, and this region includes the "thiazole I" and " thiazole II " bands of Randall et al. ${ }^{2}$ In the $1445-1375 \mathrm{~cm} .^{-1}$ region they concluded that bands at 1445 and $1435 \mathrm{~cm} .^{-1}$ arose only from absorption of the methyl groups and that bands in the range $1385-1375 \mathrm{~cm} .^{-1}$ were given by the thiazole skeleton in addition to the methyl groups. Bands in the 1340 $1175 \mathrm{~cm} .^{-1}$ region, with the exception of bands at $1192-1175 \mathrm{~cm} .^{-1}$, were assigned to skeletal vibrations of the thiazole ring, as were those in the $1160-930 \mathrm{~cm} .^{-1}$ region. The bands in the remaining region, namely $900-640 \mathrm{~cm} .^{-1}$, were associated with out-of-plane bending vibrations of the $\mathrm{C}-\mathrm{H}$ groups of the thiazole ring, but no correlation was noted between the number of bands observed and the number of hydrogen atoms attached directly to the thiazole ring.

About the same time, Sheinker, Kushkin, and Postovskii ${ }^{4}$ reported the infrared spectra of a number of 2 -aminothiazoles and their derivatives ($48-53,56$), and also discussed the

[^0]spectra of thiazole (1), some simple methylthiazoles ($2,3,5,7$) and 2 -bromothiazole (9). The infrared spectra of several 2 -aminothiazoles ${ }^{5}(48,51,56)$ and 2 -acetamidothiazoles ${ }^{6}$ (68-73) had been reported earlier; some of these spectra were measured in mineral oil only (68-73), which masked part of the " thiazole II" region of Randall et al. ${ }^{2}$ The resolution, ${ }^{4-6}$ especially in the lower frequency range, was poor, and no bands below $770 \mathrm{~cm} .{ }^{-1}$ were recorded. In a study of the infrared spectra of fifteen 2 -substituted thiazolines, Otting and Drawert ${ }^{7}$ observed the spectra of 2 -methyl-, 2 -phenyl- (10), and 2 -benzylthiazole, and noted that the intensity of the bands in the "thiazole I" region was very weak in these compounds, in contrast with the thiazolines which showed intense $\mathrm{C}=\mathrm{N}$ absorption in the $1640-1550 \mathrm{~cm} . .^{-1}$ region. Katritzky ${ }^{8}$ has pointed out that heteroaromatic compounds containing five-membered rings generally show three bands in the 1600 $1350 \mathrm{~cm} .^{-1}$ region, near 1590,1490 , and $1400 \mathrm{~cm} .^{-1}$, due to ring-stretching modes, and quoted 1610,1500 , and $1380 \mathrm{~cm} .^{-1}$ as approximate frequencies for substituted thiazoles on the basis of the Canadian work. ${ }^{3}$

The thiazole nucleus contains the conjugated $-\mathrm{C}=\mathrm{C}-\mathrm{N}=\mathrm{C}-$ system. As a result of work on aliphatic polyene azines, it has been pointed out by Blout, Fields, and Karplus ${ }^{9}$ that, with increasing conjugation, observed frequencies no longer correspond to the vibration of an individual bond, and, when the bonds are no longer alike, the assignment of the vibrations to the oscillation of individual structures, or even to certain combinations of such oscillations, becomes impossible. Bellamy, ${ }^{10}$ when discussing $\mathrm{C}=\mathrm{N}$ stretching vibrations, emphasises that the $\mathrm{C}=\mathrm{N}$ absorptions of conjugated cyclic systems cannot be considered alone, as they interact with other double bonds to a much greater extent than they do in open-chain compounds. Furthermore, the frequencies of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ links are so close that when they are present in a ring it is doubtful whether either can be regarded as retaining its original character. In conjugated cyclic systems extensive shifts of both $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ absorptions can occur and it is better to consider the group of absorptions as a whole in relation to the particular structural unit concerned. Similar conclusions concerning the ring vibrations of pyrimidines have been drawn by Short and Thompson ${ }^{11}$ and by Angyal and Werner. ${ }^{12}$ Katritzky ${ }^{8}$ has classified the molecular vibrations of heteroaromatic compounds containing planar five- and six-membered rings, basing his discussion of the skeletal modes for fivemembered rings on thiophen, furan, and pyrrole; these were divided into skeletal stretching modes at $c a .1600-1250 \mathrm{~cm} .^{-1}$, the ring-breathing frequency at $c a .1150-800 \mathrm{~cm} .^{-1}$, inplane bending at $c a .900-600 \mathrm{~cm} .^{-1}$ and out-of-plane bending at $c a .600-450 \mathrm{~cm} .^{-1}$.

During work on micrococcin P, described in Part IV ${ }^{1}$ and earlier papers ${ }^{13}$ of this series, we have had occasion to observe the infrared spectra of a considerable number of monoand di-substituted thiazoles and polythiazolyls in potassium chloride discs, and sometimes additionally in chloroform, over the range $2000-650 \mathrm{~cm} .^{-1}$. Altogether the infrared spectra of 53 mono- and poly-substituted thiazoles have been observed (including those of micro$\operatorname{coccin} P$ and of four of its derivatives whose structures are only partially known) and the results, together with data for a further 25 thiazoles abstracted from the literature are summarised in Tables 1-3. For the sake of convenience the spectrum has been divided into five sections, namely, $1800-1475,1475-1350,1350-1175,1175-930$, and $930-$ $650 \mathrm{~cm} .^{-1}$, and these will be discussed individually. The Tables have been still further subdivided for ease of reference.

[^1]| $1535-1475$ |
| :--- |
| 1485 vs |
| 1485 s |
| 1505 vs |
| 1505 s |
| $1520 \mathrm{vs}, \quad 1485 \mathrm{w}$ |
| 1518 s |
| 1530 s |
| $1530 \mathrm{vs}, \quad 1480 \mathrm{vs}$ |
| 1532 s |
| 1482 s |
| 1486 s |
| 1482 s |
| $1515 \mathrm{~m}, 1493 \mathrm{vs}$ |
| $1527 \mathrm{~m}, 1481 \mathrm{vs}$ |
| $1501 \mathrm{~s}, 1490 \mathrm{sh}$ |
| |
| 1485 m |
| 1495 m |
| $1500 \mathrm{~m}, 1480 \mathrm{~m}$ |
| 1502 s |
| $1528 \mathrm{w}, 1496 \mathrm{~m}$, |
| 1482 m |
| $1510 \mathrm{w}, 1485 \mathrm{~m}$ |
| 1505 sh |
| 1488 m |
| $1505 \mathrm{sh}, 1490 \mathrm{~m}$ |
| 1525 m |
| $1530 \mathrm{~m}, 1500 \mathrm{~m}$, |
| 1485 m |
| 1490 m |
| 1475 m |
| 1515 m |
| 1510 w |
| 1480 m |
| 1480 m |
| 1490 m |
| 1518 s |
| 1495 m |
| 1490 m |
| 1515 m |
| 1485 m |
| 1475 w |

$1634-1535$
1615 m
1605 w
1610 sh

1620 w
1537 s
1556 m
1543 m
1600 w
$1600 \mathrm{~m}, 1575 \mathrm{w}$,
1550 w
1571 w
1605 w
1543 m
1605 w
1535 w
1605 w
1545 w
1600 w
$1625 \mathrm{~m}, 1575 \mathrm{w}$
$1580 \mathrm{~m}, 1555 \mathrm{w}$
$1585 \mathrm{~m}, 1555 \mathrm{vw}$
1590 m
$1588 \mathrm{~m}, 1560 \mathrm{w}$,
1535 vw
$1577 \mathrm{~m}, 1560 \mathrm{~m}$

1605 m
$1605 \mathrm{~m}, 1580 \mathrm{w}$
1605 s
$1605 \mathrm{sh}, 1575 \mathrm{~s}$
1595 m
$1605 \mathrm{sh}, 1580 \mathrm{ws}$
$1665 \mathrm{~s}, 1535 \mathrm{~s}$
$1660 \mathrm{~s}, 1540 \mathrm{~s}$
$1625 \mathrm{~s}, 1580 \mathrm{~s}$

1625 vw
Table 1. Absorption bands in the $1800-1475 \mathrm{~cm} .^{-1}$ region.

$\begin{aligned} & \text { n } \\ & \stackrel{2}{8} \\ & \underset{\sim}{2} \end{aligned}$			
 	Ni Ein in	$$	

1700-1634	1634-1535	1535-1475
	1625vw	$1530 \mathrm{~m}, 1475 \mathrm{w}$
	1615vs	1505 m
	1595s	1525 vw
1695s		$1500 \mathrm{w}, 1475 \mathrm{~m}$
1690s		$1500 \mathrm{w}, 1480$ sh
1695s		1480 m
1680 vs		
1680vs		1480m
		1510sh, 1500s
1685 vs		1495m
1700 vs		1495m
1700s	1570 m	1490s
1695s	$1605 \mathrm{~m}, 1580 \mathrm{~m}$	1490s
1700 vs	$1595 \mathrm{~m}, 1580 \mathrm{sh}$	$1505 \mathrm{vs}, 1480 \mathrm{~m}$
	1625vs	1520s, 1490s
	1626s	1515 s
	1626s	$1515 \mathrm{~s}, 1484 \mathrm{~s}$
	1605 m	$1523 \mathrm{~s}, 1486 \mathrm{~m}$
	1627s	1523 s
	$1600 \mathrm{sh}, 1546 \mathrm{vs}$	
	1560s	
	1622 m	1516s
	1616 m	1522s
	1565s	
	1613m	1532s
	1609vs	1530 sh, 1513vs
	1609vs	$1530 \mathrm{sh}, 1510 \mathrm{vs}$
	1598 m	1523 m
	$1592 \mathrm{~s}, 1537 \mathrm{~s}$	1500 m
	$1634 \mathrm{~m}, 1605 \mathrm{w}$	$1538 \mathrm{~m}, 1522 \mathrm{~m}$
1695s	1620s	1535s
	1607s	1520 m
1640s	1605w, 1580m	$\begin{aligned} & 1530 \mathrm{~s}, 1500 \mathrm{~s}, \\ & 1490 \mathrm{sh} \end{aligned}$
1660s	$1605 \mathrm{~s}, 1585 \mathrm{~m}$	1485s
1635s	1600w, 1575m	$1520 \mathrm{~s}, 1485 \mathrm{~s}$
1658s	$1605 \mathrm{~m}, 1583 \mathrm{~m}$	1483s
1635s	$1600 \mathrm{~m}, 1575 \mathrm{~m}$	$1520 \mathrm{~s}, 1490 \mathrm{~m}$
1640vs	$1608 \mathrm{~m}, 1585 \mathrm{~m}$	$1520 \mathrm{vs}, 1485 \mathrm{~s}$
	1575 m	1490 vs
	1605s	1498s
1675 m	1634s	1490s
1655w	1630 sh, 1605s	$1515 \mathrm{~s}, 1490$ sh
	$1630 \mathrm{sh}, 1605 \mathrm{~m}$	$1515 \mathrm{~s}, 1490 \mathrm{~m}$
1668m	1551s	
1682s	1550 m	
1685m	1542s	

Table 1. (Continued.)		
Ref.	Phase	1800-1700
13c	KCl	
13c	KCl	
13 c	KCl	
13c	KCl	1725vs
13a	KCl	1730 vs
13c	KCl	1720 vs
13a	KCl	
13a	KCl	
	KCl	1720 vs
13c	KCl	
13a	KCl	
1	KCl	
1	KCl	
1	KCl	
	KCl	
5	Min. oil	
2	Nujol	
12	CHCl_{3}	
4	Min. oil *	
4	Film	
4	Film	
5	Film	
4	Min. oil *	
4	Film	
4	Min. oil *	
b	KCl	
b	KCl	
5	Min. oil	
4	Min. oil *	
2	Nujol	
c	KCl	
	CHCl_{3}	1715vs
1	KCl	1708s
1	CHCl_{3}	$\begin{aligned} & 1720 \mathrm{vs} \\ & 1705 \mathrm{~s} \end{aligned}$
1	CHCl_{3}	1723 vs
	$\mathrm{KCl}{ }^{3}$	
${ }^{\text {d }}$	KCl	
1	KCl	
${ }^{\text {d }}$	KCl	
e	KCl	
-	KCl	
-	KCl	
6	Min. oil	
6	Min. oil	
6	Min. oil	

No.	Compound
No.	2-Acetamido-4-phenylthiazole
72	2-Acetamido-5-bromo-4-methylthiazole
73	2-Acetmethylamido-4-methylthiazole
74	2-Sulphanilamidothiazole (Sulphathiazole
75	4, (5-Dimethylthiazole-2-thiol
76	4-Phenylthiazole-2-thiol
77	Micrococcin P
78	Tetra-acetylmicrococcin P

All italicised data were obtained from the literature.
vs = very strong; $\mathrm{s}=$ strong; $\mathrm{sh}=$ shoulder; m polyfluorohydrocarbon was used for the range $2000-1350 \mathrm{~cm} .^{-1}$ and mineral oil for the range $1350-770 \mathrm{~cm} .^{-1}$. 1891, 261, 26. ${ }^{\text {d }}$ Dean, Mijović, and Walker, following paper. - Chase and Walker, J., 1955, 4443.

Table 2. Absorption bands in the $1475-1175 \mathrm{~cm} .^{-1}$ region.				
Ref.	Phase	1475-1350	1350-1250	1250-1175
3	Film	1385vs	1320 vs	1240 vs
3	Film	1435vs, 1413s, 1376 s	1310 s, 1285 vw	$1210 \mathrm{~m}, 1187 \mathrm{vs}$
3	Film	1445vs, 1414vs, 1375s	$1340 \mathrm{vw}, 1307 \mathrm{vs}$	$1235 \mathrm{w}, 1220 \mathrm{w}, 1185 \mathrm{w}$
3	Film	$1445 \mathrm{~m}, 1405 \mathrm{~s}$	1305 vw	1240s, 1175 s
3	Film	1445 vs , 1380 vs	1305 vw	$1220 \mathrm{vw}, 1185 \mathrm{vs}$
3	Film	$1445 \mathrm{vs}, 1402 \mathrm{w}, 1376 \mathrm{~s}$	1290 s	$1210 \mathrm{sh}, 1188 \mathrm{vs}$
4	Film	1443s, 1374 m	1306 m	1195s
	Film	1470sh, 1445sh, $1415 \mathrm{~s}, 1380 \mathrm{~m}$	1312 m	$1240 \mathrm{~m}, 1195 \mathrm{w}$
4	Film	1390 vs	1300 m	1195w
7	KBr	$1454 \mathrm{~m}, 1418 \mathrm{~m}$	$1333 \mathrm{w}, 1324 \mathrm{~m}, 1290 \mathrm{w}, 1265 \mathrm{vw}$	$1250 \mathrm{~s}, 1178 \mathrm{vw}$
	$\left.\begin{array}{l} \mathrm{CCl}_{4} \\ \mathrm{CS}_{2} \end{array}\right\}$	1451s, 1425 m	$1332 \mathrm{~m}, 1312 \mathrm{w}, 1268 \mathrm{~m}, 1258 \mathrm{~m}$	1234w, 1180w
13 c	KCl^{2}	$1430 \mathrm{~m}, 1410 \mathrm{~m}$	$1325 \mathrm{~m}, 1275 \mathrm{~s}$	1215s
13 c	KCl	$1468 \mathrm{~s}, 1430 \mathrm{~m}, 1408 \mathrm{~m}$	$1345 \mathrm{~m}, 1315 \mathrm{~s}$	$1240 \mathrm{~s}, 1215 \mathrm{vs}, 1180 \mathrm{~s}$
13 c	$\mathrm{KCl}^{\text {r }}$	1470s, 1438m, 1422w, 1395s	$1330 \mathrm{w}, 1315 \mathrm{~s}, 1290 \mathrm{~m}$	1245vs, 1215sh, 1205sh, 1190sh
13c	KCl	$1460 \mathrm{~m}, 1435 \mathrm{~m}, 1380 \mathrm{~s}$	$1330 \mathrm{w}, 1310 \mathrm{~m}, 1275 \mathrm{w}$	1245s
	KCl	$1470 \mathrm{~s}, 1435 \mathrm{~m}, 1420 \mathrm{~m}$	1318s, 1300 m	1245s, 1195sh
	KCl	$1462 \mathrm{vs}, 1430 \mathrm{~m}, 1404 \mathrm{~m}$	$1345 \mathrm{~s}, 1330 \mathrm{~m}, 1290 \mathrm{~m}$	1240 vs
13a, c	${ }_{\mathrm{KCl}}$	$1445 \mathrm{~s}, 1410 \mathrm{w}, 1375 \mathrm{~m}$	$1340 \mathrm{~m}, 1320 \mathrm{w}, 1300 \mathrm{w}$	1245s, 1208vs, 1180sh
13b	KCl	$1455 \mathrm{~m}, 1408 \mathrm{~m}, 1375 \mathrm{~m}$	$1330 \mathrm{~m}, 1300 \mathrm{w}$	1243s, $1223 \mathrm{~s}, 1185 \mathrm{~m}$
1	KCl	1463w, 1435s, $1415 \mathrm{~s}, 1375 \mathrm{vw}$, 1355w	$1350 \mathrm{~m}, 1310 \mathrm{~m}, 1255 \mathrm{~m}$	1200 m
	KCl	1448w, 1400s, 1368 m	$1320 \mathrm{w}, 1300 \mathrm{~m}$	$1220 \mathrm{~m}, 1185 \mathrm{~m}$
	KCl	$1415 \mathrm{w}, 1395 \mathrm{~m}$	$1325 \mathrm{~m}, 1300 \mathrm{~m}$	$1230 \mathrm{~m}, 1205 \mathrm{~s}, 1175 \mathrm{~m}$
13c	KCl	$1475 \mathrm{~m}, 1433 \mathrm{~m}, 1385 \mathrm{~m}$	1340s	1233s
${ }_{13 \mathrm{c}}^{13 \mathrm{c}}$	$\mathrm{KCl}^{\text {K }}$	$1450 \mathrm{w}, 1430 \mathrm{~s}, 1363 \mathrm{~s}$	1315 s	1220 w
13c	$\mathrm{KCl}^{\text {l }}$	$1460 \mathrm{~m}, 1396 \mathrm{~m}, 1363 \mathrm{~m}$	$1315 \mathrm{~m}, 1285 \mathrm{~m}$	1243w, 1175m
	$\mathrm{KCl}^{\mathrm{KCl}}$	$1465 \mathrm{sh}, 1410 \mathrm{~m}$	$1305 \mathrm{~m}, 1270 \mathrm{~m}$, 1200 vw , 1265 m	1248w, 1230w, 1190m
	KCl		$1342 \mathrm{~m}, 1320 \mathrm{w}, 1290 \mathrm{vw}, 1265 \mathrm{~m}$	
	$\mathrm{KCl}^{\mathrm{KCl}}$	1413m, 1355m	$1350 \mathrm{~m}, 1280 \mathrm{~s}$	
132 132	KCl	1460w, 1440m, 1380w	$1320 \mathrm{~m}, 1278 \mathrm{~s}$	1205s
13 a	KCl	$1440 \mathrm{~m}, 1390 \mathrm{w}$	$1335 \mathrm{~m}, 1278 \mathrm{~s}$	1210s

[^2]

 Cl $1095 \mathrm{~m}, 1058 \mathrm{~m}$ 1095m 1060 m $1098 \mathrm{w}, 1060 \mathrm{~m}$ $1155 \mathrm{sh}, 1065 \mathrm{w}$ $1160 \mathrm{w}, 1118 \mathrm{~s}$ ， 1105w $1126 \mathrm{~s}, 1068 \mathrm{~m}$ $1126 \mathrm{~s}, 1068 \mathrm{~m}$ $1142 \mathrm{~m}, 1119 \mathrm{~m}$
1105 m 1105 m
1105 m 1064w

$1115 \mathrm{~m}, 1075 \mathrm{~m}$
$\stackrel{*}{*}$

苞 둔악
 © - 잉 ®® $1155 \mathrm{w}, 1115 \mathrm{w}$ ， 1055 m 1055m \qquad $1125 \mathrm{w}, 1095 \mathrm{~m}$ $1156 \mathrm{~m}, 1065 \mathrm{~m}$ $1150 \mathrm{~s}, 1075 \mathrm{w}$
$1135 \mathrm{vs}, 1088 \mathrm{~m}$ $1140 \mathrm{w}, 1105 \mathrm{~m}$ 1151w，1146w 1060m

$1175-1050$	$1050-930$
$1105 \mathrm{~m}, 1085 \mathrm{~m}$	$1005 \mathrm{w}, 950 \mathrm{~s}$
1105 m	960 s
$1120 \mathrm{~m}, 1100 \mathrm{~m}, 1080 \mathrm{~m}, 1065 \mathrm{w}$	$1050 \mathrm{~m}, 980 \mathrm{~s}$

$1160 \mathrm{w}, 1118 \mathrm{~s}, 1110 \mathrm{~m}, 1055 \mathrm{~s}$
 こひ चु O उु

궁
궁 궁 궁 궁 긍 725m
$700 \mathrm{w}, 665 \mathrm{~s}$
为会名 $800 \mathrm{~m}, 790 \mathrm{~m}, 765 \mathrm{~s}$,
$765 \mathrm{sh}, 755 \mathrm{~s}, 735 \mathrm{~s}$,
$770 \mathrm{~m}, 730 \mathrm{sh}, 715 \mathrm{~s}$, $790 \mathrm{~m}, 756 \mathrm{~s}$ ，740sh
 745 s 738 m

Table 3．（Continued．）
$1045 \mathrm{~m}, 1015 \mathrm{~m}, 950 \mathrm{~m}$ $1045 \mathrm{~m}, 940 \mathrm{w}$ $980 \mathrm{~m}, 945 \mathrm{~m}$ 1030s
950 w
932 m
968 m

980 m
1025 m ， 1050 m ， 1005 s
1015 w $1015 \mathrm{~m}, 995 \mathrm{w}, 950 \mathrm{w}$
$1010 \mathrm{~m}, 950 \mathrm{w}$
$1037 \mathrm{w}, 961 \mathrm{~m}$
$1020 \mathrm{w}, 1005 \mathrm{~m}, 934 \mathrm{~m}$
1015 m
$1032 \mathrm{~m}, 990 \mathrm{~m}$
$1047 \mathrm{~m}, 1010 \mathrm{~m}, 985 \mathrm{~m}$

（ $430-800$
$900 \mathrm{~s}, 828 \mathrm{~m}$
$924 \mathrm{~s}, 885 \mathrm{~m}, 835 \mathrm{~m}$
$920 \mathrm{~m}, 883 \mathrm{w}, 870 \mathrm{~m}, 862 \mathrm{~m}$,
$820 \mathrm{w}, 810 \mathrm{w}$
$925 \mathrm{~m}, 885 \mathrm{w}, 860 \mathrm{w}, 810 \mathrm{w}$
$865 \mathrm{w}, 805 \mathrm{w}$
$843 \mathrm{~s}, 815 \mathrm{~m}$
$875 \mathrm{w}, 845 \mathrm{~s}, 815 \mathrm{~m}$
$910 \mathrm{vw}, 870 \mathrm{~m}, 820 \mathrm{~s}$
$880 \mathrm{~m}, 860 \mathrm{w}$
861 m
$885 \mathrm{w}, 865 \mathrm{~m}$
$930 \mathrm{w}, 914 \mathrm{~m}, 839 \mathrm{~m}$
872 m
$910 \mathrm{w}, 850 \mathrm{~m}$
845 w
$910 \mathrm{~m}, 850 \mathrm{~m}$
$875 \mathrm{~s}, 852 \mathrm{w}, 820 \mathrm{w}$
$925 \mathrm{w}, 875 \mathrm{~s}, 855 \mathrm{w}, 840 \mathrm{~m}$,
$825 \mathrm{w}, 813 \mathrm{w}, 805 \mathrm{w}$
$925 \mathrm{w}, 882 \mathrm{~s}, 860 \mathrm{vw}, 830 \mathrm{~m}$
$930 \mathrm{w}, 900 \mathrm{w}, 865 \mathrm{~m}, 810 \mathrm{~m}$
$925 \mathrm{~m}, 910 \mathrm{~m}, 888 \mathrm{w}, 855 \mathrm{~m}$,
$823 \mathrm{~m}, 800 \mathrm{~m}$
$910 \mathrm{~m}, 845 \mathrm{~m}$
$915 \mathrm{~m}, 853 \mathrm{~m}$
$895 \mathrm{vw}, 855 \mathrm{vw}$
$880 \mathrm{~m}, 810 \mathrm{vw}$
$880 \mathrm{w}, 815 \mathrm{~s}$
847 m
893 m
$897 \mathrm{~m}, 847 \mathrm{~m}$
840 m
$920 \mathrm{~s}, 850 \mathrm{~m}, 830 \mathrm{w}, 810 \mathrm{~m}$

（ $430-800$
$900 \mathrm{~s}, 828 \mathrm{~m}$
$924 \mathrm{~s}, 885 \mathrm{~m}, 835 \mathrm{~m}$
$920 \mathrm{~m}, 883 \mathrm{w}, 870 \mathrm{~m}, 862 \mathrm{~m}$,
$820 \mathrm{w}, 810 \mathrm{w}$
$925 \mathrm{~m}, 885 \mathrm{w}, 860 \mathrm{w}, 810 \mathrm{w}$
$865 \mathrm{w}, 805 \mathrm{w}$
$843 \mathrm{~s}, 815 \mathrm{~m}$
$875 \mathrm{w}, 845 \mathrm{~s}, 815 \mathrm{~m}$
$910 \mathrm{vw}, 870 \mathrm{~m}, 820 \mathrm{~s}$
$880 \mathrm{~m}, 860 \mathrm{w}$
861 m
$885 \mathrm{w}, 865 \mathrm{~m}$
$930 \mathrm{w}, 914 \mathrm{~m}, 839 \mathrm{~m}$
872 m
$910 \mathrm{w}, 850 \mathrm{~m}$
845 w
$910 \mathrm{~m}, 850 \mathrm{~m}$
$875 \mathrm{~s}, 852 \mathrm{w}, 820 \mathrm{w}$
$925 \mathrm{w}, 875 \mathrm{~s}, 855 \mathrm{w}, 840 \mathrm{~m}$,
$825 \mathrm{w}, 813 \mathrm{w}, 805 \mathrm{w}$
$925 \mathrm{w}, 882 \mathrm{~s}, 860 \mathrm{vw}, 830 \mathrm{~m}$
$930 \mathrm{w}, 900 \mathrm{w}, 865 \mathrm{~m}, 810 \mathrm{~m}$
$925 \mathrm{~m}, 910 \mathrm{~m}, 888 \mathrm{w}, 855 \mathrm{~m}$,
$823 \mathrm{~m}, 800 \mathrm{~m}$
$910 \mathrm{~m}, 845 \mathrm{~m}$
$915 \mathrm{~m}, 853 \mathrm{~m}$
$895 \mathrm{vw}, 855 \mathrm{vw}$
$880 \mathrm{~m}, 810 \mathrm{vw}$
$880 \mathrm{w}, 815 \mathrm{~s}$
847 m
893 m
$897 \mathrm{~m}, 847 \mathrm{~m}$
840 m
$920 \mathrm{~s}, 850 \mathrm{~m}, 830 \mathrm{w}, 810 \mathrm{~m}$

（ $430-800$
$900 \mathrm{~s}, 828 \mathrm{~m}$
$924 \mathrm{~s}, 885 \mathrm{~m}, 835 \mathrm{~m}$
$920 \mathrm{~m}, 883 \mathrm{w}, 870 \mathrm{~m}, 862 \mathrm{~m}$,
$820 \mathrm{w}, 810 \mathrm{w}$
$925 \mathrm{~m}, 885 \mathrm{w}, 860 \mathrm{w}, 810 \mathrm{w}$
$865 \mathrm{w}, 805 \mathrm{w}$
$843 \mathrm{~s}, 815 \mathrm{~m}$
$875 \mathrm{w}, 845 \mathrm{~s}, 815 \mathrm{~m}$
$910 \mathrm{vw}, 870 \mathrm{~m}, 820 \mathrm{~s}$
$880 \mathrm{~m}, 860 \mathrm{w}$
861 m
$885 \mathrm{w}, 865 \mathrm{~m}$
$930 \mathrm{w}, 914 \mathrm{~m}, 839 \mathrm{~m}$
872 m
$910 \mathrm{w}, 850 \mathrm{~m}$
845 w
$910 \mathrm{~m}, 850 \mathrm{~m}$
$875 \mathrm{~s}, 852 \mathrm{w}, 820 \mathrm{w}$
$925 \mathrm{w}, 875 \mathrm{~s}, 855 \mathrm{w}, 840 \mathrm{~m}$,
$825 \mathrm{w}, 813 \mathrm{w}, 805 \mathrm{w}$
$925 \mathrm{w}, 882 \mathrm{~s}, 860 \mathrm{vw}, 830 \mathrm{~m}$
$930 \mathrm{w}, 900 \mathrm{w}, 865 \mathrm{~m}, 810 \mathrm{~m}$
$925 \mathrm{~m}, 910 \mathrm{~m}, 888 \mathrm{w}, 855 \mathrm{~m}$,
$823 \mathrm{~m}, 800 \mathrm{~m}$
$910 \mathrm{~m}, 845 \mathrm{~m}$
$915 \mathrm{~m}, 853 \mathrm{~m}$
$895 \mathrm{vw}, 855 \mathrm{vw}$
$880 \mathrm{~m}, 810 \mathrm{vw}$
$880 \mathrm{w}, 815 \mathrm{~s}$
847 m
893 m
$897 \mathrm{~m}, 847 \mathrm{~m}$
840 m
$920 \mathrm{~s}, 850 \mathrm{~m}, 830 \mathrm{w}, 810 \mathrm{~m}$

（ $430-800$
$900 \mathrm{~s}, 828 \mathrm{~m}$
$924 \mathrm{~s}, 885 \mathrm{~m}, 835 \mathrm{~m}$
$920 \mathrm{~m}, 883 \mathrm{w}, 870 \mathrm{~m}, 862 \mathrm{~m}$,
$820 \mathrm{w}, 810 \mathrm{w}$
$925 \mathrm{~m}, 885 \mathrm{w}, 860 \mathrm{w}, 810 \mathrm{w}$
$865 \mathrm{w}, 805 \mathrm{w}$
$843 \mathrm{~s}, 815 \mathrm{~m}$
$875 \mathrm{w}, 845 \mathrm{~s}, 815 \mathrm{~m}$
$910 \mathrm{vw}, 870 \mathrm{~m}, 820 \mathrm{~s}$
$880 \mathrm{~m}, 860 \mathrm{w}$
861 m
$885 \mathrm{w}, 865 \mathrm{~m}$
$930 \mathrm{w}, 914 \mathrm{~m}, 839 \mathrm{~m}$
872 m
$910 \mathrm{w}, 850 \mathrm{~m}$
845 w
$910 \mathrm{~m}, 850 \mathrm{~m}$
$875 \mathrm{~s}, 852 \mathrm{w}, 820 \mathrm{w}$
$925 \mathrm{w}, 875 \mathrm{~s}, 855 \mathrm{w}, 840 \mathrm{~m}$,
$825 \mathrm{w}, 813 \mathrm{w}, 805 \mathrm{w}$
$925 \mathrm{w}, 882 \mathrm{~s}, 860 \mathrm{vw}, 830 \mathrm{~m}$
$930 \mathrm{w}, 900 \mathrm{w}, 865 \mathrm{~m}, 810 \mathrm{~m}$
$925 \mathrm{~m}, 910 \mathrm{~m}, 888 \mathrm{w}, 855 \mathrm{~m}$,
$823 \mathrm{~m}, 800 \mathrm{~m}$
$910 \mathrm{~m}, 845 \mathrm{~m}$
$915 \mathrm{~m}, 853 \mathrm{~m}$
$895 \mathrm{vw}, 855 \mathrm{vw}$
$880 \mathrm{~m}, 810 \mathrm{vw}$
$880 \mathrm{w}, 815 \mathrm{~s}$
847 m
893 m
$897 \mathrm{~m}, 847 \mathrm{~m}$
840 m
$920 \mathrm{~s}, 850 \mathrm{~m}, 830 \mathrm{w}, 810 \mathrm{~m}$

（ $430-800$
$900 \mathrm{~s}, 828 \mathrm{~m}$
$924 \mathrm{~s}, 885 \mathrm{~m}, 835 \mathrm{~m}$
$920 \mathrm{~m}, 883 \mathrm{w}, 870 \mathrm{~m}, 862 \mathrm{~m}$,
$820 \mathrm{w}, 810 \mathrm{w}$
$925 \mathrm{~m}, 885 \mathrm{w}, 860 \mathrm{w}, 810 \mathrm{w}$
$865 \mathrm{w}, 805 \mathrm{w}$
$843 \mathrm{~s}, 815 \mathrm{~m}$
$875 \mathrm{w}, 845 \mathrm{~s}, 815 \mathrm{~m}$
$910 \mathrm{vw}, 870 \mathrm{~m}, 820 \mathrm{~s}$
$880 \mathrm{~m}, 860 \mathrm{w}$
861 m
$885 \mathrm{w}, 865 \mathrm{~m}$
$930 \mathrm{w}, 914 \mathrm{~m}, 839 \mathrm{~m}$
872 m
$910 \mathrm{w}, 850 \mathrm{~m}$
845 w
$910 \mathrm{~m}, 850 \mathrm{~m}$
$875 \mathrm{~s}, 852 \mathrm{w}, 820 \mathrm{w}$
$925 \mathrm{w}, 875 \mathrm{~s}, 855 \mathrm{w}, 840 \mathrm{~m}$,
$825 \mathrm{w}, 813 \mathrm{w}, 805 \mathrm{w}$
$925 \mathrm{w}, 882 \mathrm{~s}, 860 \mathrm{vw}, 830 \mathrm{~m}$
$930 \mathrm{w}, 900 \mathrm{w}, 865 \mathrm{~m}, 810 \mathrm{~m}$
$925 \mathrm{~m}, 910 \mathrm{~m}, 888 \mathrm{w}, 855 \mathrm{~m}$,
$823 \mathrm{~m}, 800 \mathrm{~m}$
$910 \mathrm{~m}, 845 \mathrm{~m}$
$915 \mathrm{~m}, 853 \mathrm{~m}$
$895 \mathrm{vw}, 855 \mathrm{vw}$
$880 \mathrm{~m}, 810 \mathrm{vw}$
$880 \mathrm{w}, 815 \mathrm{~s}$
847 m
893 m
$897 \mathrm{~m}, 847 \mathrm{~m}$
840 m
$920 \mathrm{~s}, 850 \mathrm{~m}, 830 \mathrm{w}, 810 \mathrm{~m}$

（ $430-800$
$900 \mathrm{~s}, 828 \mathrm{~m}$
$924 \mathrm{~s}, 885 \mathrm{~m}, 835 \mathrm{~m}$
$920 \mathrm{~m}, 883 \mathrm{w}, 870 \mathrm{~m}, 862 \mathrm{~m}$,
$820 \mathrm{w}, 810 \mathrm{w}$
$925 \mathrm{~m}, 885 \mathrm{w}, 860 \mathrm{w}, 810 \mathrm{w}$
$865 \mathrm{w}, 805 \mathrm{w}$
$843 \mathrm{~s}, 815 \mathrm{~m}$
$875 \mathrm{w}, 845 \mathrm{~s}, 815 \mathrm{~m}$
$910 \mathrm{vw}, 870 \mathrm{~m}, 820 \mathrm{~s}$
$880 \mathrm{~m}, 860 \mathrm{w}$
861 m
$885 \mathrm{w}, 865 \mathrm{~m}$
$930 \mathrm{w}, 914 \mathrm{~m}, 839 \mathrm{~m}$
872 m
$910 \mathrm{w}, 850 \mathrm{~m}$
845 w
$910 \mathrm{~m}, 850 \mathrm{~m}$
$875 \mathrm{~s}, 852 \mathrm{w}, 820 \mathrm{w}$
$925 \mathrm{w}, 875 \mathrm{~s}, 855 \mathrm{w}, 840 \mathrm{~m}$,
$825 \mathrm{w}, 813 \mathrm{w}, 805 \mathrm{w}$
$925 \mathrm{w}, 882 \mathrm{~s}, 860 \mathrm{vw}, 830 \mathrm{~m}$
$930 \mathrm{w}, 900 \mathrm{w}, 865 \mathrm{~m}, 810 \mathrm{~m}$
$925 \mathrm{~m}, 910 \mathrm{~m}, 888 \mathrm{w}, 855 \mathrm{~m}$,
$823 \mathrm{~m}, 800 \mathrm{~m}$
$910 \mathrm{~m}, 845 \mathrm{~m}$
$915 \mathrm{~m}, 853 \mathrm{~m}$
$895 \mathrm{vw}, 855 \mathrm{vw}$
$880 \mathrm{~m}, 810 \mathrm{vw}$
$880 \mathrm{w}, 815 \mathrm{~s}$
847 m
893 m
$897 \mathrm{~m}, 847 \mathrm{~m}$
840 m
$920 \mathrm{~s}, 850 \mathrm{~m}, 830 \mathrm{w}, 810 \mathrm{~m}$

（ $430-800$
$900 \mathrm{~s}, 828 \mathrm{~m}$
$924 \mathrm{~s}, 885 \mathrm{~m}, 835 \mathrm{~m}$
$920 \mathrm{~m}, 883 \mathrm{w}, 870 \mathrm{~m}, 862 \mathrm{~m}$,
$820 \mathrm{w}, 810 \mathrm{w}$
$925 \mathrm{~m}, 885 \mathrm{w}, 860 \mathrm{w}, 810 \mathrm{w}$
$865 \mathrm{w}, 805 \mathrm{w}$
$843 \mathrm{~s}, 815 \mathrm{~m}$
$875 \mathrm{w}, 845 \mathrm{~s}, 815 \mathrm{~m}$
$910 \mathrm{vw}, 870 \mathrm{~m}, 820 \mathrm{~s}$
$880 \mathrm{~m}, 860 \mathrm{w}$
861 m
$885 \mathrm{w}, 865 \mathrm{~m}$
$930 \mathrm{w}, 914 \mathrm{~m}, 839 \mathrm{~m}$
872 m
$910 \mathrm{w}, 850 \mathrm{~m}$
845 w
$910 \mathrm{~m}, 850 \mathrm{~m}$
$875 \mathrm{~s}, 852 \mathrm{w}, 820 \mathrm{w}$
$925 \mathrm{w}, 875 \mathrm{~s}, 855 \mathrm{w}, 840 \mathrm{~m}$,
$825 \mathrm{w}, 813 \mathrm{w}, 805 \mathrm{w}$
$925 \mathrm{w}, 882 \mathrm{~s}, 860 \mathrm{vw}, 830 \mathrm{~m}$
$930 \mathrm{w}, 900 \mathrm{w}, 865 \mathrm{~m}, 810 \mathrm{~m}$
$925 \mathrm{~m}, 910 \mathrm{~m}, 888 \mathrm{w}, 855 \mathrm{~m}$,
$823 \mathrm{~m}, 800 \mathrm{~m}$
$910 \mathrm{~m}, 845 \mathrm{~m}$
$915 \mathrm{~m}, 853 \mathrm{~m}$
$895 \mathrm{vw}, 855 \mathrm{vw}$
$880 \mathrm{~m}, 810 \mathrm{vw}$
$880 \mathrm{w}, 815 \mathrm{~s}$
847 m
893 m
$897 \mathrm{~m}, 847 \mathrm{~m}$
840 m
$920 \mathrm{~s}, 850 \mathrm{~m}, 830 \mathrm{w}, 810 \mathrm{~m}$

（ $430-800$
$900 \mathrm{~s}, 828 \mathrm{~m}$
$924 \mathrm{~s}, 885 \mathrm{~m}, 835 \mathrm{~m}$
$920 \mathrm{~m}, 883 \mathrm{w}, 870 \mathrm{~m}, 862 \mathrm{~m}$,
$820 \mathrm{w}, 810 \mathrm{w}$
$925 \mathrm{~m}, 885 \mathrm{w}, 860 \mathrm{w}, 810 \mathrm{w}$
$865 \mathrm{w}, 805 \mathrm{w}$
$843 \mathrm{~s}, 815 \mathrm{~m}$
$875 \mathrm{w}, 845 \mathrm{~s}, 815 \mathrm{~m}$
$910 \mathrm{vw}, 870 \mathrm{~m}, 820 \mathrm{~s}$
$880 \mathrm{~m}, 860 \mathrm{w}$
861 m
$885 \mathrm{w}, 865 \mathrm{~m}$
$930 \mathrm{w}, 914 \mathrm{~m}, 839 \mathrm{~m}$
872 m
$910 \mathrm{w}, 850 \mathrm{~m}$
845 w
$910 \mathrm{~m}, 850 \mathrm{~m}$
$875 \mathrm{~s}, 852 \mathrm{w}, 820 \mathrm{w}$
$925 \mathrm{w}, 875 \mathrm{~s}, 855 \mathrm{w}, 840 \mathrm{~m}$,
$825 \mathrm{w}, 813 \mathrm{w}, 805 \mathrm{w}$
$925 \mathrm{w}, 882 \mathrm{~s}, 860 \mathrm{vw}, 830 \mathrm{~m}$
$930 \mathrm{w}, 900 \mathrm{w}, 865 \mathrm{~m}, 810 \mathrm{~m}$
$925 \mathrm{~m}, 910 \mathrm{~m}, 888 \mathrm{w}, 855 \mathrm{~m}$,
$823 \mathrm{~m}, 800 \mathrm{~m}$
$910 \mathrm{~m}, 845 \mathrm{~m}$
$915 \mathrm{~m}, 853 \mathrm{~m}$
$895 \mathrm{vw}, 855 \mathrm{vw}$
$880 \mathrm{~m}, 810 \mathrm{vw}$
$880 \mathrm{w}, 815 \mathrm{~s}$
847 m
893 m
$897 \mathrm{~m}, 847 \mathrm{~m}$
840 m
$920 \mathrm{~s}, 850 \mathrm{~m}, 830 \mathrm{w}, 810 \mathrm{~m}$

$920 \mathrm{~s}, 850 \mathrm{~m}, 830 \mathrm{w}, 810 \mathrm{~m}$ $880 \mathrm{w}, 840 \mathrm{~m}$
925 vw
 ． a－See Table 1.

The $1800-1475 \mathrm{~cm} .^{-1}$ Region (Table 1).-(a) $1800 — 1700 \mathrm{~cm} .^{-1}$ region. The only bands observed in this region are due to ester $\mathrm{C}=\mathrm{O}$ stretching vibrations, or, in two cases (19, 29), to carboxyl-carbonyl stretching modes. All the esters examined are either ethyl or methyl esters, and all contain the ester group as a substituent in the 4 -position of the thiazole nucleus ($12-17,23,37-39,42,58-60$). In the solid state the majority absorb between 1735 and $1715 \mathrm{~cm} .^{-1}$; Bellamy ${ }^{14}$ cites $1730-1717 \mathrm{~cm}^{-1}$ as the usual range for aryl esters. The four compounds ($15,58-60$) exhibit unusually low ester-carbonyl frequencies, absorbing in the region $1708-1695 \mathrm{~cm} .^{-1}$. Three of these (58-60) were investigated in chloroform solution $(0.25-0.7 \%)$ and the ester-carbonyl absorption then shifted to the range $1723-1715 \mathrm{~cm}^{-1}$, suggesting that some intermolecular bonding may be occurring in the solid state. Similarly, compounds (12-14) showed a fairly wide variation in estercarbonyl absorption in the solid state for a series of such closely related compounds, but investigation of the spectra in chloroform solution (0.5%) showed a constant ester-carbonyl frequency of $1725 \mathrm{~cm} .^{-1}$ for all these compounds. Eisner and Erskine ${ }^{15}$ in their work on the infrared spectra of pyrrolecarboxylic esters also noted that solid-state spectra do not show uniform frequencies even among similar compounds, since the carbonyl stretching frequency depends upon the packing and hydrogen bonding of the molecules within the crystals.
(b) $1700-1535 \mathrm{~cm} .^{-1}$ region. This region includes the " thiazole I" region (1634$1570 \mathrm{~cm} .^{-1}$) originally postulated by Randall et al. ${ }^{2}$. Thiazole (1) itself shows a band of medium intensity at $1615 \mathrm{~cm} .^{-1}$, but inspection of Table 1 reveals that bands in this region are shown only by certain types of thiazoles, although they may well be masked in certain other thiazole derivatives. For those compounds ($1-3,5-8,12-16,23-25,33,34,49$, $50,52,75$) where the " thiazole I" band does appear, it is usually weak, and rarely of medium or strong intensity, and the lower end of the range appears to be around $1535 \mathrm{~cm} .^{-1}$. For the nitriles $(33,34)$, amides ($23-25$) in chloroform, esters ($12-14$) in chloroform, thiazole (1) itself, simple methylthiazoles ($2,3,5$), and 4,5 -dimethylthiazole-2-thiol (75), it is usually a weak band occurring between 1625 and $1605 \mathrm{~cm} .^{-1}$, while for esters (12-16) in the solid state it is a band of weak or medium intensity between 1600 and $1535 \mathrm{~cm} .^{-1}$. For a limited number of alkylthiazoles $(6-8)$ and alkylaminothiazoles $(49,50,52)$ the " thiazole I " band apparently appears as a medium or strong band in the region of $1565-1537 \mathrm{~cm} .^{-1}$. This is in agreement with the observation by Otting and Drawert ${ }^{7}$ that the intensity of the "thiazole I" bands in the three compounds which they investigated was very weak.

In all the other thiazole derivatives investigated, where bands are observed in this region, it is found that these are caused by the absorption of one or more of the substituent groups. In certain aryl derivatives (10, 11, 17, 76) absorption in the region of $1600-1575 \mathrm{~cm} .^{-1}$ is probably due to the $\mathrm{C}=\mathrm{C}$ stretching vibrations of the benzene rings. ${ }^{16}$

In the amide derivatives (23-25) the strong bands in the region $1685-1640 \mathrm{~cm} .^{-1}$ are assigned as primary amide I bands. This is substantiated by a shift to a higher frequency in chloroform solution $(0.3 \%))^{17}$ In methyl 2 -carbamoylthiazole-4-carboxylate (23) the nature of the strong band appearing at $1665 \mathrm{~cm} .^{-1}$ in the solid state is not clear-this band disappears in chloroform solution and is sometimes absent from spectra taken from potassium chloride discs. In chloroform solution the bands at 1605,1605 , and $1595 \mathrm{~cm} .^{-1}$ of compounds (23), (24), and (25), respectively, resolve into two, the lower-frequency band ($1580-1575 \mathrm{~cm} .^{-1}$) being assigned to primary amide II absorption, and that at $1605 \mathrm{~cm} .^{-1}$ to skeletal " thiazole I " absorption. In the hydrazides (26-28) the strong bands between 1660 and $1645 \mathrm{~cm} .^{-1}$ are assigned to amide I vibrations, those at 1535,1540 , and $1580 \mathrm{~cm} .^{-1}$

[^3]to secondary amide II vibrations, and the remaining bands at 1615,1620 , and $1625 \mathrm{~cm} .^{-1}$ to the NH deformation mode of the NH_{2} group. In the thioamides $(35,36)$ the strong bands at 1615 and $1595 \mathrm{~cm} .^{-1}$ respectively are likewise assigned to NH deformation vibrations. ${ }^{18}$

None of the simpler thiazole carboxylic acids (29-32) shows any bands in the " thiazole I ' region; the carbonyl absorption occurs in the range $1695-1670 \mathrm{~cm} .{ }^{-1}$ with an additional strong band at $1715 \mathrm{~cm}^{-1}$ for thiazole-2,4-dicarboxylic acid (29). The keto-esters (37-39) similarly show no " thiazole I" bands, and the ketonic-carbonyl frequencies lie between 1695 and $1690 \mathrm{~cm} .^{-1}$. In spectra of the keto-acids $(40,41)$ the acid- and ketonic-carbonyl frequencies are not resolved in the solid state, but give a single strong band at $1680 \mathrm{~cm} .^{-1}$. The hydroxy-acids $(43,44)$ show acid-carbonyl absorption at 1685 and $1700 \mathrm{~cm} .^{-1}$, respectively, but no absorption in the "thiazole I" region. In the amino-acid hydrochlorides (45-47) the acid-carbonyl frequency is at or near to $1700 \mathrm{~cm} .^{-1}$, and the bands between 1605 and $1570 \mathrm{~cm} .^{-1}$ are probably associated with $\mathrm{NH}_{3}{ }^{+}$deformation frequencies, although exact assignment is difficult.

The band at $1626 \mathrm{~cm} .^{-1}$ in Nujol falling to $1605 \mathrm{~cm} .^{-1}$ in chloroform shown by 2 -aminothiazole (48) is due to NH deformation vibrations of the amino-group. Similar bands in the range $1622-1598 \mathrm{~cm} .^{-1}$ are observed in spectra of other 2 -aminothiazoles ($51,53-56$, 58). For the benzamido-derivatives (59-62) the amide I band in the solid state occurs in the region $1640-1635 \mathrm{~cm} .^{-1}$ shifting to close to $1660 \mathrm{~cm} . .^{-1}$ in chloroform (59,60). The two characteristic benzoyl bands near 1600 and $1580 \mathrm{~cm} .^{-1}$ are also observed. In the solid state the secondary amide II band appears between 1520 and $1530 \mathrm{~cm} .^{-1}$. The bands at 1595 and $1573 \mathrm{~cm} .^{-1}$ in the sulphanilamide (74) are very probably due to a combination of NH deformation vibrations and the vibrations of the benzene ring. The exact assignment of the bands in the more complex molecules (57,63-67) in this region has not been attempted but the bands are certainly due to NH deformation modes and vibrations of the benzene rings.

The acetamidothiazoles (68-72) in mineral oil mulls show the secondary amide I band in the range $1685-1648 \mathrm{~cm} .^{-1}$ and the secondary amide II band between 1561 and $1542 \mathrm{~cm}^{-1}$. In the tertiary amide (73) the amide I band occurs at $1648 \mathrm{~cm} .^{-1}$; in this compound there is a weak band at $1542 \mathrm{~cm} .^{-1}$, which could be due to a thiazole skeletal vibration.
(c) 1535- $1475 \mathrm{~cm} .^{-1}$ region. This includes the " thiazole II " region ($1538-1493 \mathrm{~cm} .^{-1}$) of Randall et al..2 which we should certainly extend as far as $1475 \mathrm{~cm} .^{-1}$ and possibly to $1470 \mathrm{~cm} .^{-1}$. Thiazole (1) itself shows a very strong band at $1485 \mathrm{~cm} .^{-1}$, and all the compounds examined possess one or two bands in this region except a small number ($8,49,50$, $52,68-72$); some of these compounds (68-72) were investigated in mineral oil mulls on an instrument of apparently low sensitivity, where bands in part of the "thiazole II" region would be masked by the absorption of the mineral oil itself. For the majority of the compounds examined one or both of the bands in this region are of medium or strong intensity, exceptions being 4 -cyanothiazole (33), 2,4'-bithiazolyl-4-carbonamide (25) in the crystalline state, and $2,4^{\prime}$-bithiazolyl-4-carbothioamide (36).

The 1475-1350 cm..$^{-1}$ Region (Table 2).-This region of the spectrum includes both the CH_{3} and CH_{2} deformation vibrations, giving rise to absorptions near $\mathbf{1 4 6 0}$ (asymmetrical mode) and $1375 \mathrm{~cm}^{-1}$ (symmetrical mode). Taurins, Fenyes, and Jones ${ }^{3}$ concluded that, since thiazole (1) showed a strong band at $1385 \mathrm{~cm} .^{-1}$, the bands at 1445 and $1435 \mathrm{~cm} .^{-1}$ in the methylthiazoles (2-6) arose by absorption of the methyl groups, and that bands at $1385-1375 \mathrm{~cm}^{-1}$ are given by the thiazole skeleton as well as by the methyl groups. Most of the thiazoles examined had several bands in the $1475-1350 \mathrm{~cm} .^{-1}$ region, and the majority possessed at least one band in the range $1445-1385 \mathrm{~cm} .^{-1}$, usually of medium or strong intensity (exceptions being $27,56,68-73$ where no absorption at all could be observed in the region under discussion).
${ }^{18}$ Bellamy, ref. 10, p. 256.

The $1350-1175 \mathrm{~cm} .^{-1}$ Region (Table 2).-This is a complex region with many bands due to substituent groups, in addition to the skeletal thiazole vibrations. Thiazole (1) shows two very strong bands in this region, at 1320 and $1240 \mathrm{~cm} .^{-1}$. All the compounds investigated, with only two exceptions $(28,70)$ have at least one band of usually medium to strong intensity within the range $1345-1290 \mathrm{~cm} .^{-1}$, which includes the range $1315-1300 \mathrm{~cm} .^{-1}$ regarded by Sheinker et al. ${ }^{4}$ on the basis of their smaller selection of data as being linked with oscillations of the thiazole ring, and the majority possess a medium to strong band in the range $1250-1195 \mathrm{~cm} .^{-1}$. Taurins et al. ${ }^{3}$ assigned the bands at $1192-1175 \mathrm{~cm} .^{-1}$ to skeletal $\mathrm{C}-\mathrm{CH}_{3}$ vibrations. Bands in this region occur in several compounds other than methyl derivatives, but it is of interest that a strong or medium band within the range $1190-1175 \mathrm{~cm} .^{-1}$ is a constant feature of the 4 -substituted bithiazolyls (13, 21, 22, 25, 26, $31,34,36)$ regardless of the nature of the substituent.

The $1175-930 \mathrm{~cm} .^{-1}$ Region (Table 3).-(a) $1175-1050 \mathrm{~cm} .^{-1}$ region. Thiazole (1) itself shows a very strong band at $1120 \mathrm{~cm} .^{-1}$. Most of the 2 -monosubstituted thiazoles examined $(2,9,10,48-50,68,74)$ have one main band in the range $1160-1130 \mathrm{~cm} .^{-1}$ accompanied by a less intense band of lower frequency, at $1088-1055 \mathrm{~cm} .^{-1}$. 2-Phenylthiazole (10) has in addition two more bands (1092 w and 1053 s); in 2 -bromothiazole (9) the lower-frequency band is at $1047 \mathrm{~cm} .^{-1}$, and 2-dimethylaminothiazole (50) has four bands in this region. In contrast, the 4 - and 5 -monosubstituted thiazoles ($3,4,12,24,30,33,35$) all have a single band between 1135 and $1090 \mathrm{~cm} .^{-1}$, and in only one (24) is it accompanied by a lowerfrequency band (at $1085 \mathrm{~cm} .^{-1}$). Amongst the thirty-two 2,4 -disubstituted thiazoles (5,16 , $17,23,27-29,32,37-47,51,52,54-64,69,71,73,76)$ investigated, all except five have at least one band within the range $1140-1077 \mathrm{~cm} .^{-1}$, usually of medium or strong intensity. The five exceptions ($56,69,71,73,76$) are all compounds whose spectra were taken from the literature, and accurate detailed values are not available. The two 2,5 -disubstituted thiazoles $(6,11)$ had strong bands at 1160 and $1152 \mathrm{~cm} .^{-1}$, respectively. The $2,4,5$-trisubstituted thiazoles ($7,53,65-67,70,72,75$) have no strong bands in this region, but since three ($65-67$) contain phenyl groups which show absorption in this region, and five ($7,53,70,72,75$) have been abstracted from the literature and are therefore of uncertain accuracy, caution must be exercised in interpreting these results. The absence of strong bands in the trisubstituted thiazoles does suggest, however, that this is the region of $\mathrm{C}-\mathrm{H}$ in-plane deformation vibrations.

The ten polythiazolyls examined ($13-15,21,22,25,26,31,34,36$) all possessed a single band, usually of medium intensity, within the range $1153-1075 \mathrm{~cm} .{ }^{-1}$, except (22), which showed an additional weak band at $1100 \mathrm{~cm} .^{-1}$.
(b) $1050-930 \mathrm{~cm} .^{-1}$ region. The 4 -monosubstituted thiazoles (3, 12, 24, 30, 33, 35) show the most characteristic behaviour in this region, all showing a strong band in the $980-930 \mathrm{~cm} .^{-1}$ region. The 2 -monosubstituted thiazoles $(2,9,10,48-50,68,74)$ and the 5 -monosubstituted compound (4) all show bands of widely varying frequency and intensity, while thiazole (1) itself has a single very strong band at $1040 \mathrm{~cm} .^{-1}$. The rest of the compounds generally show one or more medium or strong bands whose frequencies do not bear any obvious relation to the pattern of substitution or nature of the substituent.

The $930-650 \mathrm{~cm} .^{-1}$ Region (Table 3). -The bands in this region are usually associated with ring vibrations and $\mathrm{C}-\mathrm{H}$ out-of-plane deformations. The data for certain compounds ($7,9,49-53,56,57,68-73,75,76$), which were abstracted from the literature, are probably not complete.
(a) $930-800 \mathrm{~cm}^{-1}$ region. All the 2 - and 4 -monosubstituted thiazoles $(2,3,9,10,12$, $24,30,33,35,48-50,68,74$) possess strong or medium bands within the range $890-850$ $\mathrm{cm} .^{-1}$. Thiazole (1) itself shows two strong bands at 880 and $860 \mathrm{~cm} .^{-1}$, and Sheinker et al. ${ }^{4}$ regard a band in the $880-860 \mathrm{~cm} .^{-1}$ region as being perhaps characteristic of the thiazole ring. The 2,4 - and 2,5 -disubstituted thiazoles and the $2,4,5$-trisubstituted compounds seldom exhibit bands in this range. When the substituents are thiazole rings $(13-15,21,22,25,26,31,34,36)$, however, or when there are two thiazole nuclei in close
proximity in the molecule $(16,17)$ a strong band in the $890-860 \mathrm{~cm} .^{-1}$ region again appears. Of all the compounds examined, the 4 -monosubstituted thiazoles (3, 12, 24, 30, 33, 35) show the greatest complexity in the $930-800 \mathrm{~cm} .^{-1}$ region, possessing from two to four strong bands. A similar complexity is found in the polythiazolyls or in compounds where there are two thiazole nuclei close to each other in the molecule (13-17, 21, 22, 25, 26, $31,34,36$).
(b) $800-700 \mathrm{~cm} .^{-1}$ region. Thiazole (1) has two strong bands at 800 and $720 \mathrm{~cm} .^{-1}$, and nearly all the compounds investigated possessed at least one strong or medium band in this region. The absorption pattern here appears to depend more on the nature of the substituent than on the type of substitution; for example, the simple alkyl and phenyl derivatives (2-6, 8, 10, 11) have usually a single strong band, while the simple carboxylic acids (29-32) appear to have two medium intensity bands. Similarly, closely related compounds have very similar absorption patterns ($24-26,37-39,45-47$). The absence of bands in the trisubstituted compounds ($7,53,65-67,70,72$), except for the absorption of the monosubstituted benzene ring, appears to suggest that absorptions in this region are attributable to $\mathrm{C}-\mathrm{H}$ out-of-plane deformation modes, but this conclusion should be regarded with caution, since it is based on observations on a very limited number of compounds.
(c) $700-650 \mathrm{~cm} .^{-1}$ region. As expected, all compounds containing monosubstituted benzene rings for which accurate measurements are available, show a strong ($10,11,59-66$), or medium (32), band in this region, due to the $\mathrm{C}-\mathrm{H}$ out-of-plane deformation mode. In addition, three methyl derivatives $(3,5,6)$ show strong to medium bands in the 670 $652 \mathrm{~cm} .^{-1}$ range. The only other compounds to show absorption in this region were all those compounds containing an NH_{2} group, in the form of a primary amine, amide, thioamide (except 36), or hydrazide (23-28, 35, 45-48,54,55,58, 63, 64, 74); other exceptions were compounds (65) and (66) where the band might be masked by the monosubstituted aromatic absorption, and compound (67).

These observations may be summarised as follows. The "thiazole I" band ${ }^{2}$ in the $1625-1535 \mathrm{~cm} .^{-1}$ region is only observed in certain thiazole derivatives, and is usually weak. This is in marked contrast to the thiazolines ${ }^{7}$ which show intense $\mathrm{C}=\mathrm{N}$ absorption in the range $1640-1550 \mathrm{~cm} .^{-1}$. Nearly all the thiazoles investigated showed one or two medium to strong bands in the "thiazole II" region ${ }^{2}$ ($1535-1475 \mathrm{~cm} .^{-1}$). Similarly, most of them have at least one medium to strong band in the range $1445-1385 \mathrm{~cm} .^{-1}$. These three regions correspond to the three approximate skeletal frequencies quoted for substituted thiazoles by Katritzky ${ }^{8}\left(1610,1500\right.$, and $1380 \mathrm{~cm} .^{-1}$).

Most of the thiazoles have bands in the $1345-1290 \mathrm{~cm} .^{-1}$ and $1250-1195 \mathrm{~cm} .^{-1}$ regions, usually strong to medium, and all the 4 -substituted bithiazolyls have a medium to strong band in the $1190-1175 \mathrm{~cm} .^{-1}$ region. Most of the 2 -monosubstituted thiazoles examined had one main band in the range $1160-1130 \mathrm{~cm} .^{-1}$, accompanied by a less intense band in the range $1088-1055 \mathrm{~cm} .^{-1}$. In contrast, the 4 - and 5 -monosubstituted thiazoles had a single band in the $1135-1090 \mathrm{~cm} .{ }^{-1}$ region. In addition, the 4 -monosubstituted compounds all had a strong band in the $980-930 \mathrm{~cm} .^{-1}$ region, and showed a complex pattern (two to four strong bands) in the $930-800 \mathrm{~cm} .^{-1}$ region. All the 2 - and 4 -monosubstituted thiazoles had strong bands in the $890-850 \mathrm{~cm} .^{-1}$ range. The majority of the 2,4 -disubstituted derivatives possessed at least one band within the range $1140-1077 \mathrm{~cm} .^{-1}$, but seldom exhibited bands in the $890-850 \mathrm{~cm} .^{-1}$ region; the polythiazolyls, however, all showed a strong band in this range. The trisubstituted thiazoles showed no strong bands in either the $1160-1050 \mathrm{~cm} .^{-1}$ or the $930-800 \mathrm{~cm} .^{-1}$ region. The only compounds to show bands between 700 and $650 \mathrm{~cm} .^{-1}$ were those containing a monosubstituted benzene ring, some methyl derivatives, and those compounds containing an NH_{2} group in the form of primary amine, amide, thioamide, or hydrazide. There appears to be no correlation between the number and position of the bands in the $930-650 \mathrm{~cm} .^{-1}$ region and the pattern of substitution, as there is in the benzene and pyridine series.

Experimental

All the infrared spectra were measured with a Perkin-Elmer double-beam recording spectrophotometer (model 21) incorporating a sodium chloride prism.

Dimethyl $2,2^{\prime}$-Methylenebisthiazole-4,4'-dicarboxylate (16).-(i) A mixture of malononitrile (3.3 g .), liquid hydrogen sulphide (ca. 3 c.c.), and triethanolamine (3 drops) in ethanol (20 c.c.) was heated at 50° in a sealed tube for 6 hr . The crystalline product $(6.35 \mathrm{~g} ., 95 \%)$ was collected, washed with ethanol, and dried at 100°. Recrystallisation from dimethylformamide-ethanol gave dithiomalonamide as yellow needles, m. p. 214-215 ${ }^{\circ}$ (decomp.). Lehr, Guex, and Erlenmeyer ${ }^{19}$ report m. p. 212° (decomp.).
(ii) The preceding product (1.34 g .) was heated on a water-bath with methyl bromopyruvate (3.62 g .) and dimethylformamide ($5 \mathrm{c} . \mathrm{c}$.) for 2 hr . The brown crystals which separated on ccoling were collected, washed with ethanol, and dried at 100°. Recrystallisation from dimethyl-formamide-ethanol gave dimethyl 2,2'-methylenebisthiazole-4,4'-dicarboxylate ($850 \mathrm{mg} ., 30 \%$) as pale yellow plates, m. p. $177-179^{\circ}$ (Found: C, 44.6; H, 3.5; N, 9.3. $\quad \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires C, $44 \cdot 3 ; \mathrm{H}, 3 \cdot 4 ; \mathrm{N}, 9 \cdot 4 \%$).

Dimethyl $2,2^{\prime}$-p-Phenylenebisthiazole-4,4'-dicarboxylate (17).-(i) A mixture of terephthalonitrile ${ }^{20}$ (750 mg .), liquid hydrogen sulphide (ca. 2 c.c.), triethanolamine (2 drops), and ethanol (20 c.c.) was heated at 50° in a sealed tube for 6 hr . The crystalline product was collected and washed with a little ethanol. Recrystallisation from dimethylformamide-ether gave dithioterephthalamide as yellow plates ($870 \mathrm{mg} ., \mathbf{7 6 \%}$), m. p. 271- $\mathbf{2 7 3}{ }^{\circ}$. Luckenbach ${ }^{21}$ reports m. p. 263° (decomp.).
(ii) A mixture of the preceding compound (392 mg .) and methyl bromopyruvate (724 mg .) in dimethylformamide (5 c.c.) was heated at 100° for 2 hr . After cooling, the product was collected and recrystallised from dimethylformamide, giving dimethyl $2,2^{\prime}$-p-phenylenebisthiazole-$4,4^{\prime}$-dicarboxylate (440 mg ., 61%) as off-white crystals, m. p. 253- $\mathbf{2 5 6}^{\circ}$ (Found: C, $53.5 ; \mathrm{H}, \mathbf{3 . 3}$; $\mathrm{N}, 7 \cdot 8 . \quad \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 53 \cdot 3 ; \mathrm{H}, 3 \cdot 3 ; \mathrm{N}, 7 \cdot 8 \%$).

2,4'-Bithiazolyl-4-carbohydrazide (26).—A mixture of ethyl 2,4'-bithiazolyl-4-carboxylate (544 mg .) and hydrazine hydrate (110 mg .) in ethanol ($7 \mathrm{c} . \mathrm{c}$.) was heated under reflux for 2 hr . After cooling, the crystalline product was collected and recrystallised from dimethylformamideethanol, giving the hydrazide ($\mathbf{4 5 0} \mathrm{mg}$., 88%) as colourless needles, m. p. 264-266 ${ }^{\circ}$ (Found: C, $37 \cdot 6 ; \mathrm{H}, 2 \cdot 9 ; \mathrm{N}, 24 \cdot 4 . \quad \mathrm{C}_{\mathbf{7}} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{OS}_{2}$ requires C, $\mathbf{3 7} \cdot \mathbf{1} ; \mathrm{H}, 2 \cdot 7 ; \mathrm{N}, \mathbf{2 4 . 7} \%$).

2-Aminothiazole-4-carbohydrazide (27).-A mixture of ethyl 2-aminothiazole-4-carboxylate ${ }^{22}$ (1.72 g .) and hydrazine hydrate (1.0 g .) in ethanol ($10 \mathrm{c.c}$.) was heated under reflux for 1 hr . The solution was filtered, and the crystals which separated on cooling were collected. Recrystallisation from ethanol gave 2-aminothiazole-4-carbohydrazide ($1.5 \mathrm{~g} ., 95 \%$) as colourless needles, m. p. 192-195 (Found: C, 30.6; H, 3.7; S, 20.1. $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{OS}$ requires C, 30.4; H, 3.8; S, 20.3%).

2-Hydrazinothiazole-4-carbohydrazide (28).-Ethyl 2-bromothiazole-4-carboxylate (600 mg .) was heated under reflux with hydrazine hydrate (590 mg .) in ethanol (10 ccc .) for 1 hr . The crystalline product, which separated on cooling, was collected, and crystallised from dimethyl-formamide-ethanol as fawn needles ($170 \mathrm{mg} ., 39 \%$), m. p. 235- 236° (decomp.) (Found: C, $28.0 ; \mathrm{H}, 4.4 ; \mathrm{S}, 18.2 . \quad \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{OS}$ requires C, $27.7 ; \mathrm{H}, 4.1$; S, 18.5%).

2,4'-Bithiazolyl-4-carboxylic Acid (31).-Ethanolic 10% potassium hydroxide (20 c.c.) was added to a suspension of methyl $2,4^{\prime}$-bithiazolyl-4-carboxylate ($2 \cdot 26 \mathrm{~g}$.) in ethanol ($50 \mathrm{c} . \mathrm{c}$.), and the mixture warmed on a water-bath for 10 min . The ester dissolved and the potassium salt of the acid was precipitated. The salt was dissolved in water (35 c.c.), and the solution acidified to Congo Red with concentrated hydrochloric acid. Evaporation to dryness and recrystallisation of the residue from 20% aqueous acetic acid gave $2,4^{\prime}$-bithiazolyl-4-carboxylic acid (1.94 g ., $\mathbf{9 1 \%}$) as colourless needles, m. p. 231-232 ${ }^{\circ}$ (Found: C, $39 \cdot 6 ; \mathrm{H}, \mathrm{I} \cdot 9$; N, $12 \cdot 9 . \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 39 \cdot 6 ; \mathrm{H}, 1 \cdot 9 ; \mathrm{N}, 13 \cdot 2 \%$).

2-1'-Benzamidoethyl-4-benzylthiazole (61).-A mixture of α-benzamidopropionothioamide ${ }^{23}$ (1.04 g .) and benzyl chloromethyl ketone (842 mg .) in methanol (10 c.c.) was heated under

[^4]reflux for 4 hr . The methanol was removed by distillation, and the residual oil taken up in benzene and washed with aqueous sodium carbonate and water. Removal of the benzene left an oil ($1.5 \mathrm{~g} ., 93 \%$) which slowly crystallised. Recrystallisation from aqueous ethanol (charcoal) gave $2-1^{\prime}$-benzamidoethyl-4-benzylthiazole as colourless needles, m. p. 127-129 (Found: C, 70.2: $\mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 8 \cdot 6 . \quad \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$ requires $\left.\mathrm{C}, 70 \cdot 8 ; \mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 8 \cdot 7 \%\right)$.

The authors are indebted to Mr. R. J. Clark for preparative assistance.
National Institute for Medical Research, The Ridgeway, Mill Hill, London, N.W.7.
[Received, February 9th, 1961.]

[^0]: * These and similar Arabic numerals in parentheses refer to the numbers of compounds in the Tables.
 ${ }^{1}$ Part IV, Brookes, Clark, Majhofer, Mijović, and Walker, J., 1960, 925.
 ${ }^{2}$ Randall, Fowler, Fuson, and Dangl, "Infra-red Determination of Organic Structures," D. Van Nostrand Co., Inc., New York, 1949.
 ${ }^{3}$ Taurins, Fenyes, and Jones, Canad. J. Chem., 1957, 35, 423.
 ${ }^{4}$ Sheinker, Kushkin, and Postovskii, Zhur. fiz. Khim., 1957, 31, 214.

[^1]: ${ }^{5}$ Bogomolov, Sheinker, and Postovskii, Zhur. obshchei Khim., 1954, 24, 539.

 - Bogomolov, Sheinker, and Postovskii, Doklady Akad. Nauk S.S.S.R., 1953, 93, 277.

 7 Otting and Drawert, Chem. Ber., 1955, 88, 1469.
 ${ }^{8}$ Katritzky, Quart. Rev., 1959, 13, 353.
 ${ }^{9}$ Blout, Fields, and Karplus, J. Amer. Chem. Soc., 1948, 70, 194.
 10 Bellamy, "The Infra-red Spectra of Complex Molecules," 2nd edn., Methuen \& Co., Ltd., London, 1958, p. 270.
 ${ }_{11}$ Short and Thompson, J., 1952, 168.
 12 Angyal and Werner, J., 1952, 2911.
 13 (a) Brookes, Fuller, and Walker, $J ., 1957$, 689; (b) Mijović and Walker, $J ., 1960,906$; (c) Brookes, Clark, Fuller, Mijović, and Walker, J., 1960, 916.

[^2]: 世

 NO だ

[^3]: 14 Bellamy, ref. 10, p. 179.
 ${ }_{15}$ Eisner and Erskine, J., 1958, 971.
 ${ }^{16}$ Bellamy, ref. 10, pp. 71 - 72.
 ${ }^{17}$ Bellamy, ref. 10, p. 210.

[^4]: ${ }^{19}$ Lehr, Guex, and Erlenmeyer, Helv. Chim. Acta ,1944, 27, 971.
 ${ }^{20}$ Rouiller, Amer. Chem. J., 1912, 47, 475.
 ${ }^{21}$ Luckenbach, Ber., 1884, 17, 1430.
 ${ }_{22}$ Steude, Annalen, 1891, 261, 26.
 ${ }^{23}$ Goldberg and Kelly, J., 1947, 1372.

